Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene (original) (raw)

References

  1. Sigurs, N., Bjarnason, R., Sigurbergsson, F. & Kjellman, B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161, 1501–1507 (2000).
    Article CAS Google Scholar
  2. Sigurs, N., Bjarnason, R., Sigurbergsson, F., Kjellman, B. & Bjorksten, B. Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls. Pediatrics 95, 500–505 (1995).
    CAS PubMed Google Scholar
  3. Shay, D.K. et al. Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA 282, 1440–1446 (1999).
    Article CAS Google Scholar
  4. Hall, C.B., Long, C.E. & Schnabel, K.C. Respiratory syncytial virus infections in previously healthy working adults. Clin. Infect. Dis. 33, 792–796 (2001).
    Article CAS Google Scholar
  5. Thompson, W.W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003).
    Article Google Scholar
  6. Sly, P.D. & Hibbert, M.E. Childhood asthma following hospitalization with acute viral bronchiolitis in infancy. Pediatr. Pulmonol. 7, 153–158 (1989).
    Article CAS Google Scholar
  7. Brandenburg, A.H., Neijens, H.J. & Osterhaus, A.D. Pathogenesis of RSV lower respiratory tract infection: implications for vaccine development. Vaccine 19, 2769–2782 (2001).
    Article CAS Google Scholar
  8. Coffin, S.E. & Offit, P.A. New vaccines against mucosal pathogens: rotavirus and respiratory syncytial virus. Adv. Pediatr. Infect. Dis. 13, 333–348 (1997).
    CAS PubMed Google Scholar
  9. Handforth, J., Friedland, J.S. & Sharland, M. Basic epidemiology and immunopathology of RSV in children. Paediatr. Respir. Rev. 1, 210–214 (2000).
    CAS PubMed Google Scholar
  10. Welliver, R.C. Review of epidemiology and clinical risk factors for severe respiratory syncytial virus (RSV) infection. J. Pediatr. 143, S112–S117 (2003).
  11. Collins, P.L., Chanock, R.M. & Murphy, B.R. in Fields Virology Vol. 1, 4th edn (eds. Knipe, D.M., Howley, P.M. & Griffin, D.E.), 1443–1485 (Lippincott-Raven, Philadelphia, 2001).
    Google Scholar
  12. Jin, H. et al. Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology 273, 210–208 (2000).
    Article CAS Google Scholar
  13. Teng, M. N, & Collins, P.L. Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J. Virol. 73, 466–473 (1999).
    CAS PubMed PubMed Central Google Scholar
  14. Teng, M.N. et al. Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J. Virol. 74, 9317–9321 (2000).
    Article CAS Google Scholar
  15. Murphy, B.R & Collins, P.L. Live-attenuated virus vaccines for respiratory syncytial and parainfluenza viruses: applications of reverse genetics. J. Clin. Invest. 110, 21-27 (2002).
  16. Hall, C.B., Walsh, E.E., Long, C.E. & Schnabel, K.C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).
    Article CAS Google Scholar
  17. Roman, M. et al. Respiratory syncytial virus infection in infants is associated with predominant TH2-like response. Am. J. Respir. Crit. Care Med. 156, 190–195 (1997).
    Article CAS Google Scholar
  18. Matsuse, H. et al. Recurrent respiratory syncytial virus infections in allergen-sensitized mice lead to persistent airway inflammation and hyperresponsiveness. J. Immunol. 164, 6583–6592 (2000).
    Article CAS Google Scholar
  19. Behera, A.K., Kumar, M., Lockey, R.F. & Mohapatra, S.S. Adenovirus-mediated interferon gamma gene therapy for allergic asthma: involvement of interleukin 12 and STAT4 signaling. Hum. Gene Ther. 13, 1697–1709 (2002).
    Article CAS Google Scholar
  20. Kumar, M., Behera, A.K., Matsuse, H., Lockey, R.F. & Mohapatra, S.S. Intranasal IFN-γ gene transfer protects BALB/c mice against respiratory syncytial virus infection. Vaccine 18, 558–567 (1999).
    Article CAS Google Scholar
  21. Kumar, M. et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/C mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13, 1415–1425 (2002).
    Article CAS Google Scholar
  22. Kumar, M. et al. Chitosan IFN-g-pDNA nanoparticle (CIN) therapy for allergic asthma. Genetic Vaccines and Ther. 1, 3–12 (2003).
    Article Google Scholar
  23. Mohapatra, SS. Mucosal gene expression vaccine: a novel a vaccine strategy for respiratory syncytial virus. Pediatr. Infect. Dis J. 22, S100–S103 (2003).
  24. Hellermann, G., Mohapatra, SS. Genetic Therapy: on the brink of a newfuture. Genetic Vaccines and Ther. 1, 1–3 (2003).
    Article Google Scholar
  25. Bossert, B. & Conzelmann, K.K. Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: a chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells. J. Virol. 76, 4287–4293 (2002).
    Article CAS Google Scholar
  26. Bossert, B., Marozin, S, & Conzelmann, K.K. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol. 77, 8661–8668 (2003).
    Article CAS Google Scholar
  27. Schlender, J., Bossert, B., Buchholz, U & Conzelmann, K.K. Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize α/β interferon-induced antiviral response. J. Virol. 74, 8234–8242 (2000).
    Article CAS Google Scholar
  28. Spann, K.M., Tran, K.C., Chi, B., Rabin, R.L. & Collins, P.L. Suppression of the induction of α, β, and γ interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J. Virol. 78, 4363–4369 (2004).
    Article CAS Google Scholar
  29. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).
    Article CAS Google Scholar
  30. Zhang, W., Singam, R., Hellermann, G., Kong, X., San Juan, H., Lockey, R.F., Wu, S.J., Porter, K., Mohapatra, S.S. Attenuation of dengue virus infection by adeno- associated virus-mediated siRNA delivery. Genetic Vaccines Ther. 2, 8–12 (2004).
    Article Google Scholar
  31. Hallak, L.K., Collins, P.L., Knudson, W. & Peeples, M.E. Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275 (2000).
    Article CAS Google Scholar
  32. Mosca, J.D. & Pitha, P.M. Transcriptional and posttranscriptional regulation of exogenous human β interferon gene in simian cells defective in interferon synthesis. Mol. Cell. Biol. 6, 2279–2283 (1986).
    Article CAS Google Scholar
  33. Leaman, D.W. et al. Targeted therapy of respiratory syncytial virus in African green monkeys by intranasally administered 2-5A antisense. Virology 292, 70–77 (2002).
    Article CAS Google Scholar
  34. Fisher, T.L., Terhorst, T., Cao, X. & Wagner, R.W. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 21, 3857–3865 (1993)
    Article CAS Google Scholar
  35. Kole, R. & Sazani, P. Antisense effects in the cell nucleus: modification of splicing. Curr. Opin. Mol. Ther. 3, 229–234 (2001).
    CAS PubMed Google Scholar
  36. Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14428–14433 (2001).
    Article CAS Google Scholar
  37. Arnold, R., Humbert, B., Werchau, H., Gallati, H. & Konig, W. Interleukin-8, interleukin-6, and soluble tumor necrosis factor receptor type-I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus. Immunology 82, 126–133 (1994).
    CAS PubMed PubMed Central Google Scholar
  38. Atreya, P.L., Peeples, M.E. & Collins, P.L. The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. J. Virol. 72, 1452–1461 (1998).
    CAS PubMed PubMed Central Google Scholar
  39. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).
    Article CAS Google Scholar
  40. Barnes, B., Lubyova, B. & Pitha, P.M. On the role of IRF in host defense. J. Interferon Cytokine Res. 22, 59–71 (2002).
    Article CAS Google Scholar
  41. Harada, H. et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58, 729–739 (1989).
    Article CAS Google Scholar
  42. Pine, R., Decker, T., Kessler, D.S., Levy, D.E. & Darnell, JE Jr. Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta interferon- and interferon-stimulated genes but is not a primary transcriptional activator of either. Mol. Cell. Biol. 10, 2448–2457 (1990).
    Article CAS Google Scholar
  43. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).
    Article CAS Google Scholar
  44. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).
    Article CAS Google Scholar
  45. Sato, Y. et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354 (1996).
    Article CAS Google Scholar
  46. Pebernard, S. & Iggo, R.D. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72, 103–111 (2004).
    Article CAS Google Scholar
  47. Bont, L., Kavelaars, A., Heijnen, C.J., van Vught, A.J. & Kimpen, J.L. Monocyte interleukin-12 production is inversely related to duration of respiratory failure in respiratory syncytial virus bronchiolitis. J. Infect. Dis. 181, 1772–1775 (2000).
    Article CAS Google Scholar
  48. Bartz, H. et al. Respiratory syncytial virus decreases the capacity of myeloid dendritic cells to induce interferon-gamma in naive T cells. Immunology 109, 49–57 (2003).
    Article CAS Google Scholar

Download references