Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis (original) (raw)

References

  1. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–188 (1999).
    Article CAS Google Scholar
  2. Ernst, J.D. Bacterial inhibition of phagocytosis. Cell. Microbiol. 2, 379–386 (2000).
    Article CAS Google Scholar
  3. Musser, J.M. & Krause, R.M. in Emerging Infections (eds. Krause, R.M. & Fauci, A.) 185–218 (Academic Press, San Diego, 1998).
    Book Google Scholar
  4. Cunningham, M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470–511 (2000).
    Article CAS Google Scholar
  5. Lei, B., Mackie, S.M., Lukomski, S. & Musser, J.M. Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect. Immun. 68, 6807–6818 (2000).
    Article CAS Google Scholar
  6. Corbi, A.L., Kishimoto, T.K., Miller, L.J. & Springer, T.A. The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) αsubunit. Cloning, primary structure, and relation to the integrins, von willebrand factor and factor B. J. Biol. Chem. 263, 12403–12411 (1988).
    CAS PubMed Google Scholar
  7. Diamond, M.S. et al. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell. Biol. 111, 3129–3139 (1990).
    Article CAS Google Scholar
  8. Springer, T.A. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl. Acad. Sci. USA 94, 65–72 (1997).
    Article CAS Google Scholar
  9. Oxvig C., Lu C. & Springer T.A., Conformational changes in tertiary structure near the ligand binding site of an integrin domain. Proc. Natl. Acad. Sci. USA 96, 2215–2220 (1999).
    Article CAS Google Scholar
  10. Beall, B., Facklam, R., Hoenes, T. & Schwartz, B. Survey of emm gene sequences and T-antigen types from systemic Streptococcus pyogenes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J. Clin. Microbiol. 35, 1231–1235 (1997).
    CAS PubMed PubMed Central Google Scholar
  11. Levin, J.C. & Wessels, M.R. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol. Microbiol. 30, 209–219 (1998).
    Article CAS Google Scholar
  12. Federle, M.J., McIver, K.S. & Scott, J.R. A response regulator that represses transcription of several virulence operons in the group A streptococcus. J. Bacteriol. 181, 3649–3657 (1999).
    CAS PubMed PubMed Central Google Scholar
  13. Heath, A., DiRita, V.J., Barg, N.L. & Engleberg, N.C. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 67, 5298–5305 (1999).
    CAS PubMed PubMed Central Google Scholar
  14. Taniguchi-Sidle, A. & Isenman, D.E. Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J. Biol. Chem. 267, 635–643 (1992).
    CAS PubMed Google Scholar
  15. Van Strijp, J.A. Russell, D.G., Tuomanen, E. Brown, E.J. & Wright, S.D. Ligand specificity of purified complement receptor type three (CD11b/CD18, amb2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J. Immunol. 151, 3324–3336 (1993).
    CAS PubMed Google Scholar
  16. DeLeo, F.R., Allen, L.-A.H., Apicella, M. & Nauseef, W.M. NADPH oxidase activation and assembly during phagocytosis. J. Immunol. 163, 6732–6740 (1999).
    CAS PubMed Google Scholar
  17. Brown, E.J., Bohnsack, J.F. & Gresham, H.D. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. J. Clin. Invest. 81, 365–375 (1988).
    Article CAS Google Scholar
  18. Sehgal, G., Zhang, K., Todd III, R.F., Boxer, L.A. & Petty, H.R. Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. J. Immunol. 150, 4571–4580 (1993).
    CAS PubMed Google Scholar
  19. Zhou, M.J. & Brown, E.J. CR3 (Mac-1,α-M β2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRIII and tyrosine phosphorylation. J. Cell. Biol. 125, 1407–1416 (1994).
    Article CAS Google Scholar
  20. Stocl, J. et al. Granulocyte activation via a binding site near the C-terminal region of complement receptor 3 α-chain (CD11b) potentially involved in intramembrane complex formation with glycosylphosphatidylinositol-anchored FcγRIIIB (CD16) molecules. J. Immunol. 154, 5452–5463 (1995).
    Google Scholar
  21. Galon, J. et al. Soluble Fcγ receptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J. Immunol. 157, 1184–1192 (1996).
    CAS PubMed Google Scholar
  22. Schnitzler, N., Haase, G., Podbielski, A., Lutticken, R. & Schweizer, K.G. A co-stimulatory signal through ICAM-β2 integrin-binding potentiates neutrophils phagocytosis. Nature Med. 5, 231–235 (1999).
    Article CAS Google Scholar
  23. Wexler, D.E., Chenoweth, D.E. & Cleary, P.P. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA 82, 8144–8148 (1985).
    Article CAS Google Scholar
  24. Ji, Y., McLandsborough, L., Kondagunta, A. & Cleary, P.P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64, 503–510 (1996).
    CAS PubMed PubMed Central Google Scholar
  25. Whitnack, E. & Beachey, E.H. Antiopsonic activity of fibrinogen bound to M protein on the surface of group A Streptococci. J. Clin. Invest. 69, 1042–1045 (1982).
    Article CAS Google Scholar
  26. Horstmann, R.D., Sievertsen, H.J., Knobloch, J. & Fischetti, V.A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 85, 1657–1661 (1988).
    Article CAS Google Scholar
  27. Horstmann, R.D., Sievertsen, H.J., Leippe, M. & Fischetti, V.A. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect. Immun. 60, 5036–5041 (1992).
    CAS PubMed PubMed Central Google Scholar
  28. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of Mycobacteria. Cell 97, 435–447 (1999).
    Article CAS Google Scholar
  29. Belcher, C.E. et al. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl. Acad. Sci., USA 97, 13847–13852 (2000).
    Article CAS Google Scholar
  30. Thakker, M., Park, J.-S., Carey, V. & Lee, J.C. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine model. Infect. Immun. 66, 5183–5189 (1998).
    CAS PubMed PubMed Central Google Scholar
  31. Yang, Z.-Y. et al. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279, 1034–1037 (1998).
    Article CAS Google Scholar
  32. Hoe, N.P. et al. Human immune response to streptococcal inhibitor of complement, a serotype M1 group A Streptococcus extracellular protein involved in epidemics. J. Infect. Dis. 182, 1425–1436 (2000).
    Article CAS Google Scholar
  33. Chaussee, M.S., Watson, R.O., Smoot, J.C. & Musser, J.M. Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect. Immun. 69, 822–831 (2001).
    Article CAS Google Scholar
  34. Ross, G.D. et al. Specificity of membrane complement receptor type three (CR3) for β-glucans. Complement 4, 61–74 (1987).
    Article CAS Google Scholar
  35. Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. J. Clin. Lab. Invest. 21, 77–89 (1968).
    Article CAS Google Scholar
  36. Ingalls, R.R., Arnaout, M.A. & Golenbock, D.T. Outside-in signaling by lipopolysaccharide through a tailless integrin. J. Immunol. 159, 433–438 (1997).
    CAS PubMed Google Scholar
  37. Stockbauer, K.E. et al. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3 . Proc. Natl. Acad. Sci. USA 96, 242–247 (1998).
    Article Google Scholar
  38. Dale, J.B., Chiang, E.Y., Liu, S., Courtney, H.S. & Hasty, D.L. New protective antigen of group A streptococci. J. Clin. Invest. 103, 1261–1268 (1999).
    Article CAS Google Scholar

Download references