Calmodulin kinase II inhibition protects against structural heart disease (original) (raw)
Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med.348, 2007–2018 (2003). Article Google Scholar
Doughty, R.N., Whalley, G.A., Gamble, G., MacMahon, S. & Sharpe, N. Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Australia-New Zealand Heart Failure Research Collaborative Group. J. Am. Coll. Cardiol.29, 1060–1066 (1997). ArticleCAS Google Scholar
Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet353, 2001–2007 (1999).
Chu, G. et al. A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta -agonists. J. Biol. Chem.275, 38938–38943 (2000). ArticleCAS Google Scholar
Zhu, W.Z. et al. Linkage of beta(1)-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Invest.111, 617–625 (2003). ArticleCAS Google Scholar
Hoch, B., Meyer, R., Hetzer, R., Krause, E.G. & Karczewski, P. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res.84, 713–721 (1999). ArticleCAS Google Scholar
Zhang, T. et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res.92, 912–919 (2003). ArticleCAS Google Scholar
Maier, L.S. et al. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res.92, 904–911 (2003). ArticleCAS Google Scholar
Gwathmey, J.K. et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ. Res.61, 70–76 (1987). ArticleCAS Google Scholar
Gomez, A.M. et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science276, 800–806 (1997). ArticleCAS Google Scholar
Hudmon, A. & Schulman, H. Structure/function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem. J.364, 593–611 (2002). ArticleCAS Google Scholar
Braun, A.P. & Schulman, H. A non-selective cation current activated via the multi-functional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J. Physiol.488, 37–55 (1995). ArticleCAS Google Scholar
Huang, W., Aramburu, J., Douglas, P.S. & Izumo, S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat. Med.6, 482–483 (2000). ArticleCAS Google Scholar
Wu, Y. et al. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation106, 1288–1293 (2002). ArticleCAS Google Scholar
Benedict, C.R. et al. Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation94, 690–697 (1996). ArticleCAS Google Scholar
Vinogradova, T.M. et al. Sinoatrial node pacemaker activity requires Ca2+/calmodulin- dependent protein kinase II activation. Circ. Res.87, 760–767 (2000). ArticleCAS Google Scholar
Bauman, A.L. & Scott, J.D. Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat. Cell Biol.4, E203–E206 (2002). ArticleCAS Google Scholar
Hagemann, D. et al. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J. Biol. Chem.275, 2532–22536 (2000). Article Google Scholar
Drago, G.A. & Colyer, J. Discrimination between two sites of phosphorylation on adjacent amino acids by phosphorylation site-specific antibodies to phospholamban. J. Biol. Chem.269, 25073–25077 (1994). CAS Google Scholar
Benjamin, I.J. et al. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ. Res.65, 657–670 (1989). ArticleCAS Google Scholar
Ramirez, M.T., Zhao, X.L., Schulman, H. & Brown, J.H. The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J. Biol. Chem.272, 31203–31208 (1997). ArticleCAS Google Scholar
Kudej, R.K. et al. Effects of chronic beta-adrenergic receptor stimulation in mice. J. Mol. Cell Cardiol.29, 2735–2746 (1997). ArticleCAS Google Scholar
Dzhura, I., Wu, Y., Colbran, R.J., Balser, J.R. & Anderson, M.E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat. Cell Biol.2, 173–177 (2000). ArticleCAS Google Scholar
Yue, D.T., Herzig, S. & Marban, E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc. Nat. Acad. Sci. USA87, 753–757 (1990). ArticleCAS Google Scholar
Currie, S., Loughrey, C.M., Craig, M.A. & Smith, G.L. Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem. J.377, 357–366 (2004). ArticleCAS Google Scholar
Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell101, 365–376 (2000). ArticleCAS Google Scholar
Cannon, W.P. & de la Paz, D. Emotional stimulation of adrenal secretion. Am. J. Physiol.28, 64–70 (1911). ArticleCAS Google Scholar
Fabiato, A. & Fabiato, F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol.249, 469–495 (1975). ArticleCAS Google Scholar
Wehrens, X.H., Lehnart, S.E., Reiken, S.R. & Marks, A.R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res.94, e61–e70 (2004). ArticleCAS Google Scholar
Rodriguez, P., Bhogal, M.S. & Colyer, J. Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J. Biol. Chem.278, 38593–38600 (2003). ArticleCAS Google Scholar
Sah, R., Ramirez, R.J., Kaprielian, R. & Backx, P.H. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes. J. Physiol.533, 201–214 (2001). ArticleCAS Google Scholar
Alseikhan, B.A., DeMaria, C.D., Colecraft, H.M. & Yue, D.T. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc. Natl. Acad. Sci. USA99, 17185–17190 (2002). ArticleCAS Google Scholar
Chao, S.H., Suzuki, Y., Zysk, J.R. & Cheung, W.Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol.26, 75–82 (1984). CAS Google Scholar
Gao, T. et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron19, 185–196 (1997). ArticleCAS Google Scholar
Anderson, M.E., Braun, A.P., Schulman, H. & Premack, B.A. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ. Res.75, 854–861 (1994). ArticleCAS Google Scholar
Xiao, R.P., Cheng, H., Lederer, W.J., Suzuki, T. & Lakatta, E.G. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc. Natl. Acad. Sci. USA91, 9659–9663 (1994). ArticleCAS Google Scholar
Yuan, W. & Bers, D.M. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am. J. Physiol.267, H982–H993 (1994). CAS Google Scholar
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov.1, 309–315 (2002). ArticleCAS Google Scholar
Patberg, K.W. et al. Cardiac memory is associated with decreased levels of the transcriptional factor CREB modulated by angiotensin II and calcium. Circ. Res.93, 472–478 (2003). ArticleCAS Google Scholar
Benitah, J.P. & Vassort, G. Aldosterone upregulates Ca(2+) current in adult rat cardio-myocytes. Circ. Res.85, 1139–1145 (1999). ArticleCAS Google Scholar
Chu, L. et al. Signal transduction and Ca2+ signaling in contractile regulation induced by crosstalk between endothelin-1 and norepinephrine in dog ventricular myocardium. Circ. Res.92, 1024–1032 (2003). ArticleCAS Google Scholar
Muth, J.N., Bodi, I., Lewis, W., Varadi, G. & Schwartz, A. A Ca(2+)-dependent transgenic model of cardiac hypertrophy: A role for protein kinase Calpha. Circulation103, 140–147 (2001). ArticleCAS Google Scholar
Pan, L., Gurevich, E.V. & Gurevich, V.V. The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor. J. Biol. Chem.278, 11623–11632 (2003). ArticleCAS Google Scholar
Wu, Y., Colbran, R.J. & Anderson, M.E. Calmodulin kinase is a molecular switch for cardiac excitation - contraction coupling. Proc. Natl. Acad. Sci. USA98, 2877–2881 (2001). ArticleCAS Google Scholar
Hadley, R.W. & Lederer, W.J. Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. J. Gen. Physiol.98, 265–285 (1991). ArticleCAS Google Scholar
Rottman, J.N. et al. Temporal changes in ventricular function assessed echocardiographically in conscious and anesthetized mice. J. Am. Soc. Echocardiogr.16, 1150–1157 (2003). Article Google Scholar
Ichihara, S. et al. Targeted deletion of angiotensin II type 2 receptor caused cardiac rupture after acute myocardial infarction. Circulation106, 2244–2249 (2002). ArticleCAS Google Scholar
Choi, B.R. & Salama, G. Optical mapping of atrioventricular node reveals a conduction barrier between atrial and nodal cells. Am. J. Physiol.274, H829–H845 (1998). CAS Google Scholar