Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes (original) (raw)

References

  1. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
    Article CAS Google Scholar
  2. Wong, J.K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
    Article CAS Google Scholar
  3. Siliciano, J.D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728 (2003).
    Article CAS Google Scholar
  4. Persaud, D., Zhou, Y., Siliciano, J.M. & Siliciano, R.F. Latency in human immunodeficiency virus type 1 infection: no easy answers. J. Virol. 77, 1659–1665 (2003).
    Article CAS Google Scholar
  5. Kasschau, K.D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003).
    Article CAS Google Scholar
  6. Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).
    Article CAS Google Scholar
  7. Lecellier, C.H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).
    Article CAS Google Scholar
  8. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).
    Article CAS Google Scholar
  9. Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G. & Fraser, N.W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006).
    Article CAS Google Scholar
  10. Bennasser, Y., Le, S.Y., Benkirane, M. & Jeang, K.T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619 (2005).
    Article CAS Google Scholar
  11. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).
    Article CAS Google Scholar
  12. Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579–1582 (2007).
    Article CAS Google Scholar
  13. Furtado, M.R. et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 340, 1614–1622 (1999).
    Article CAS Google Scholar
  14. Chun, T.W. et al. Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc. Natl. Acad. Sci. USA 100, 1908–1913 (2003).
    Article CAS Google Scholar
  15. Lassen, K.G., Ramyar, K.X., Bailey, J.R., Zhou, Y. & Siliciano, R.F. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog. 2, e68 (2006).
    Article Google Scholar
  16. Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340, 1605–1613 (1999).
    Article CAS Google Scholar
  17. Patterson, B.K. et al. Persistence of intracellular HIV-1 mRNA correlates with HIV-1–specific immune responses in infected subjects on stable HAART. AIDS 15, 1635–1641 (2001).
    Article CAS Google Scholar
  18. Kim, Y.K. et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J. 25, 3596–3604 (2006).
    Article CAS Google Scholar
  19. Williams, S.A. et al. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 25, 139–149 (2006).
    Article CAS Google Scholar
  20. Lassen, K.G., Bailey, J.R. & Siliciano, R.F. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J. Virol. 78, 9105–9114 (2004).
    Article CAS Google Scholar
  21. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).
    Article CAS Google Scholar
  22. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 13, 849–851 (2006).
    Article CAS Google Scholar
  23. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).
    Article Google Scholar
  24. Pomerantz, R.J., Seshamma, T. & Trono, D. Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J. Virol. 66, 1809–1813 (1992).
    CAS PubMed PubMed Central Google Scholar
  25. Schwartz, S., Felber, B.K., Benko, D.M., Fenyo, E.M. & Pavlakis, G.N. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J. Virol. 64, 2519–2529 (1990).
    CAS PubMed PubMed Central Google Scholar
  26. Chen, K. et al. α-interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J. Virol. 80, 7645–7657 (2006).
    Article CAS Google Scholar
  27. Wang, F.X. et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Invest. 115, 128–137 (2005).
    Article CAS Google Scholar
  28. Dornadula, G. et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. J. Am. Med. Assoc. 282, 1627–1632 (1999).
    Article CAS Google Scholar
  29. Butler, S.L., Hansen, M.S. & Bushman, F.D. A quantitative assay for HIV DNA integration in vivo. Nat. Med. 7, 631–634 (2001).
    Article CAS Google Scholar

Download references