Dimorphic effects of Notch signaling in bone homeostasis (original) (raw)
Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCAS Google Scholar
Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol.7, 678–689 (2006). ArticleCAS Google Scholar
Weinmaster, G. The ins and outs of Notch signaling. Mol. Cell. Neurosci.9, 91–102 (1997). ArticleCAS Google Scholar
Daudet, N. & Lewis, J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development132, 541–551 (2005). ArticleCAS Google Scholar
Brennan, C.A. & Moses, K. Determination of Drosophila photoreceptors: timing is everything. Cell. Mol. Life Sci.57, 195–214 (2000). ArticleCAS Google Scholar
Bulman, M.P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet.24, 438–441 (2000). ArticleCAS Google Scholar
Shen, J. et al. Skeletal and CNS defects in presenilin-1–deficient mice. Cell89, 629–639 (1997). ArticleCAS Google Scholar
Deregowski, V., Gazzerro, E., Priest, L., Rydziel, S. & Canalis, E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-catenin but not bone morphogenetic protein signaling. J. Biol. Chem.281, 6203–6210 (2006). ArticleCAS Google Scholar
Sakamoto, K., Chao, W.S., Katsube, K. & Yamaguchi, A. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res.302, 281–291 (2005). ArticleCAS Google Scholar
Sciaudone, M., Gazzerro, E., Priest, L., Delany, A.M. & Canalis, E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology144, 5631–5639 (2003). ArticleCAS Google Scholar
Tezuka, K. et al. Stimulation of osteoblastic cell differentiation by Notch. J. Bone Miner. Res.17, 231–239 (2002). ArticleCAS Google Scholar
Zamurovic, N., Cappellen, D., Rohner, D. & Susa, M. Coordinated activation of Notch, Wnt, and transforming growth factor-β signaling pathways in bone morphogenic protein 2–induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J. Biol. Chem.279, 37704–37715 (2004). ArticleCAS Google Scholar
Nakashima, K. et al. The novel zinc finger–containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). ArticleCAS Google Scholar
Galindo, M. et al. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem.280, 20274–20285 (2005). ArticleCAS Google Scholar
Pratap, J. et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res.63, 5357–5362 (2003). CASPubMed Google Scholar
Shen, R. et al. Cyclin D1–cdk4 induce Runx2 ubiquitination and degradation. J. Biol. Chem.281, 16347–16353 (2006). ArticleCAS Google Scholar
Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell8, 727–738 (2005). ArticleCAS Google Scholar
Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell8, 739–750 (2005). ArticleCAS Google Scholar
Glass, D.A., II et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell8, 751–764 (2005). ArticleCAS Google Scholar
Krishnan, V., Bryant, H.U. & Macdougald, O.A. Regulation of bone mass by Wnt signaling. J. Clin. Invest.116, 1202–1209 (2006). ArticleCAS Google Scholar
Tu, X. et al. Noncanonical Wnt signaling through G protein–linked PKC-δ activation promotes bone formation. Dev. Cell12, 113–127 (2007). ArticleCAS Google Scholar
Janssens, K., ten Dijke, P., Janssens, S. & Van Hul, W. Transforming growth factor-β1 to the bone. Endocr. Rev.26, 743–774 (2005). ArticleCAS Google Scholar
Mezquita-Raya, P. et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos. Int.16, 1368–1374 (2005). Article Google Scholar
Fahrleitner-Pammer, A. et al. Osteoprotegerin serum levels in women: correlation with age, bone mass, bone turnover and fracture status. Wien. Klin. Wochenschr.115, 291–297 (2003). ArticleCAS Google Scholar
Arko, B., Prezelj, J., Kocijancic, A., Komel, R. & Marc, J. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas51, 270–279 (2005). ArticleCAS Google Scholar
Choi, J.Y. et al. Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif. Tissue Int.77, 152–159 (2005). ArticleCAS Google Scholar
Hofbauer, L.C. et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology140, 4367–4370 (1999). ArticleCAS Google Scholar
Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev.12, 1260–1268 (1998). ArticleCAS Google Scholar
Boyce, B.F. & Xing, L. Osteoclasts, no longer osteoblast slaves. Nat. Med.12, 1356–1358 (2006). ArticleCAS Google Scholar
Zhao, C. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab.4, 111–121 (2006). ArticleCAS Google Scholar
Zhou, G. et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl. Acad. Sci. USA103, 19004–19009 (2006). ArticleCAS Google Scholar
Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev.13, 1025–1036 (1999). ArticleCAS Google Scholar
Segall, H.I., Yoo, E. & Sutton, R.E. Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol. Ther.8, 118–129 (2003). ArticleCAS Google Scholar
Dai, C., McAninch, R.E. & Sutton, R.E. Identification of synthetic endothelial cell–specific promoters by use of a high-throughput screen. J. Virol.78, 6209–6221 (2004). ArticleCAS Google Scholar
Sutton, R.E., Wu, H.T., Rigg, R., Bohnlein, E. & Brown, P.O. Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J. Virol.72, 5781–5788 (1998). CASPubMedPubMed Central Google Scholar
Xing, L. et al. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J. Bone Miner. Res.17, 1200–1210 (2002). ArticleCAS Google Scholar