Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion (original) (raw)
References
Chambers, C.A. & Allison, J.P. Co-stimulation in T cell responses. Curr. Opin. Immunol.9, 396–404 (1997). ArticleCASPubMed Google Scholar
Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol.14, 233–258 (1996). ArticleCASPubMed Google Scholar
Chen, L., Linsley, P.S. & Hellstrom, K.E. Costimulation of T cells for tumor immunity. Immunol. Today14, 483–486 (1993). ArticleCASPubMed Google Scholar
Boise, L.H., Noel, P.J. & Thompson, C.B. CD28 and apoptosis. Curr. Opin. Immunol.7, 620–625 (1995). ArticleCASPubMed Google Scholar
Watts, T.H. & DeBenedette, M.A. T cell co-stimulatory molecules other than CD28. Curr. Opin. Immunol.11, 286–293 (1999). ArticleCASPubMed Google Scholar
Noel, P.J., Boise, L.H., Green, J.M. & Thompson, C.B. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol.157, 636–642 (1996). CASPubMed Google Scholar
Hurtado, J.C., Kim, Y.J. & Kwon, B.S. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol.158, 2600–2609 (1997). CASPubMed Google Scholar
Takahashi, C., Mittler, R.S. & Vella, A.T. 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol.162, 5037–5040 (1999). CASPubMed Google Scholar
Rogers, P.R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes bcl-xl and bcl-2 expression and is essential for long-term survival of CD4+ T cells. Immunity15, 445–455 (2001). ArticleCASPubMed Google Scholar
Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med.183, 2533–2540 (1996). ArticleCASPubMed Google Scholar
Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med.183, 2541–2550 (1996). ArticleCASPubMed Google Scholar
Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med.5, 1365–1369 (1999). ArticleCASPubMed Google Scholar
Tamura, H. et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood97, 1809–1816 (2001). ArticleCASPubMed Google Scholar
Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif–carrying immunoreceptor. Immunity11, 141–151 (1999). ArticleCASPubMed Google Scholar
Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor–deficient mice. Science291, 319–322 (2001). ArticleCASPubMed Google Scholar
Rivoltini, L. et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res.55, 3149–3157 (1995). CASPubMedPubMed Central Google Scholar
Jeremias, I., Herr, I., Boehler, T. & Debatin, K.M. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur. J. Immunol.28, 143–152 (1998). ArticleCASPubMed Google Scholar
Zhao, S. et al. Functional expression of TRAIL by lymphoid and myeloid tumour cells. Br. J. Haematol.106, 827–832 (1999). ArticleCASPubMed Google Scholar
Lu, J. & Celis, E. Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res.60, 5223–5227 (2000). CASPubMed Google Scholar
Georgescu, L., Vakkalanka, R.K. Elkon, K.B. & Crow, M.K. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J. Clin. Invest.100, 2622–2633 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sykulev, Y. et al. High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. Proc. Natl. Acad. Sci. USA91, 11487–11491 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tamada, K., Tamura, H., Flies, D.B., Fu, Y.X., Pease, L.R., Blazar, B.R. & Chen, L. Blockade of LIGHT/LTβ and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J. Clin. Invest.109, 549–557 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chen, L., McGowan, P., Ashe, S., Johnston, J., Li, Y., Hellstrom, I. & Hellstrom, K.E. Tumor immunogenicity determines the effect of B7 costimulation on T cell–mediated tumor immunity. J. Exp. Med.179, 523–532 (1994). ArticleCASPubMed Google Scholar
Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol.2, 293–299 (2001). ArticleCAS Google Scholar
Griffith, T.S, Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand–induced apoptosis as a mechanism of immune privilege. Science270, 1189–1192 (1995). ArticleCASPubMed Google Scholar
O'Connell, J., Bennett, M.W., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. Fas counter-attack: the best form of tumor defense? Nature Med.5, 267–268 (1999). ArticleCASPubMed Google Scholar
Strand, S. & Galle, P.R. Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol. Med. Today4, 63–68 (1998). ArticleCASPubMed Google Scholar
Chappell, D.B, Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res.59, 59–62 (1999). CASPubMedPubMed Central Google Scholar
Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA.94, 13862–13867 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nakashima, M., Sonoda, K. & Watanabe, K. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen, RCAS1. Nature Med.5, 938–942 (1999). ArticleCASPubMed Google Scholar
Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J.11, 3887–3895 (1992). ArticleCASPubMedPubMed Central Google Scholar
Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A. & Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity1, 793–801 (1994). ArticleCASPubMed Google Scholar
Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol.8, 765–772 (1996). ArticleCASPubMed Google Scholar
Finger, L.R. et al. G The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene197, 177–187 (1997). ArticleCASPubMed Google Scholar
Chapoval, A.I., Zhu, G. & Chen, L. Immunoglobulin fusion protein as a tool for evaluation of T-cell costimulatory molecules. Methods Mol. Med.45, 247–255 (2000). CASPubMed Google Scholar
Kobayashi, H., Wood, M., Song, Y., Appella, E. & Celis, E. Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res.60, 5228–5236 (2000). CASPubMed Google Scholar
Yu, Z., Kryzer, T.J., Griesmann, G.E., Kim, K.K., Benarroch, E., & Lennon, V.A. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann. Neurol.49, 146–154 (2001). ArticleCASPubMed Google Scholar