A fresh look at tumor immunosurveillance and immunotherapy (original) (raw)
Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci.105, 487–511 (1893). Article Google Scholar
Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev.173, 89–97 (2000). ArticleCASPubMed Google Scholar
Fuchs, E. J. & Matzinger, P. Is cancer dangerous to the immune system? Semin. Immunol.8, 271–280 (1996). ArticleCASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med.5, 1249–1255 (1999). ArticleCASPubMed Google Scholar
Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol.13, 114–119 (2001). ArticleCASPubMed Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). ArticleCASPubMed Google Scholar
Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). ArticleCASPubMed Google Scholar
Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science271, 1723–1726 (1996). ArticleCASPubMed Google Scholar
Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998). ArticleCASPubMed Google Scholar
Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med.4, 321–327 (1998). ArticleCASPubMed Google Scholar
Marchand, M. et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int. J. Cancer63, 883–885 (1995). ArticleCASPubMed Google Scholar
Jager, E., Jager, D. & Knuth, A. CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev.18, 143–150 (1999). ArticleCASPubMed Google Scholar
Van den Eynde, B. J. & van der Bruggen, P. T cell defined tumor antigens. Curr. Opin. Immunol.9, 684–693 (1997). ArticleCASPubMed Google Scholar
Wang, R. F. & Rosenberg, S. A. Human tumor antigens for cancer vaccine development. Immunol. Rev.170, 85–100 (1999). ArticleCASPubMed Google Scholar
Houghton, A. N. Cancer antigens: immune recognition of self and altered self. J. Exp. Med.180, 1–4. (1994). ArticleCASPubMed Google Scholar
Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995). ArticleCASPubMed Google Scholar
Rickinson, A. B. & Moss, D. J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu. Rev. Immunol.15, 405–431 (1997). ArticleCASPubMed Google Scholar
Pfreundschuh, M. Exploitation of the B cell repertoire for the identification of human tumor antigens. Cancer Chemother. Pharmacol.46, 3–7 (2000). Article Google Scholar
Robert, J. & Cohen, N. Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol. Rev.166, 231–243 (1998). ArticleCASPubMed Google Scholar
Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA93, 12445–12450 (1996). ArticleCASPubMedPubMed Central Google Scholar
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science279, 1737–1740 (1998). ArticleCASPubMed Google Scholar
Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol.1, 119–126 (2000). ArticleCAS Google Scholar
Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity12, 721–727 (2000). ArticleCASPubMed Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). ArticleCASPubMed Google Scholar
Whiteside, T. L. & Herberman, R. B. The role of natural killer cells in immune surveillance of cancer. Curr. Opin. Immunol.7, 704–710 (1995). ArticleCASPubMed Google Scholar
Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today21, 573–583 (2000). ArticleCASPubMed Google Scholar
Smyth, M. J. & Godfrey, D. I. NKT cells and tumor immunity: a double edged sword. Nature Immunol.1, 459–460 (2000). ArticleCAS Google Scholar
Salcedo, M. Inhibitory role of murine Ly49 lectin-like receptors on natural killer cells. Curr. Top. Microbiol. Immunol.244, 97–105 (1999). CASPubMed Google Scholar
Takei, F., Brennan, J. & Mager, D. L. The Ly 49 family: genes, proteins and recognition of class I MHC. Immunol. Rev.155, 67–77 (1997). ArticleCASPubMed Google Scholar
Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. NK cell recognition of non-classical HLA class I molecules. Semin. Immunol.12, 109–119 (2000). ArticleCASPubMed Google Scholar
Braud, V. M. & McMichael, A. J. Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E. Curr. Top. Microbiol. Immunol.244, 85–95 (1999). CASPubMed Google Scholar
Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature406, 788–792 (2000). ArticleCASPubMed Google Scholar
Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today21, 228–234 (2000). ArticleCASPubMed Google Scholar
Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science285, 730–732 (1999). ArticleCASPubMed Google Scholar
Cosman, D. et al. ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity14, 123–133 (2001). ArticleCASPubMed Google Scholar
Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γ δ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA96, 6879–6884 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J. Biochem. (Tokyo)120, 987–995 (1996). ArticleCAS Google Scholar
Gatti, R. A. & Good, R. A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer28, 89–98 (1971). ArticleCASPubMed Google Scholar
McClain, K. L. Immunodeficiency states and related malignancies. Cancer Treat. Res.92, 39–61 (1997). ArticleCASPubMed Google Scholar
Cannon, M. & Cesarman, E. Kaposi's sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Semin. Oncol.27, 409–419 (2000). CASPubMed Google Scholar
Paller, A. S. Immunodeficiency syndromes. X-linked aγglobulinemia, common variable immunodeficiency, Chediak-Higashi syndrome, Wiskott-Aldrich syndrome, and X-linked lymphoproliferative disorder. Dermatol. Clin.13, 65–71 (1995). ArticleCASPubMed Google Scholar
Otley, C. C. & Pittelkow, M. R. Skin cancer in _Liver Transpl._ant recipients. Liver Transpl.6, 253–262 (2000). ArticleCASPubMed Google Scholar
Aguilar, L. K., Rooney, C. M. & Heslop, H. E. Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. Curr. Opin. Oncol.11, 96–101 (1999). ArticleCASPubMed Google Scholar
Haliotis, T., Ball, J. K., Dexter, D. & Roder, J. C. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int. J. Cancer35, 505–513 (1985). ArticleCASPubMed Google Scholar
Gershwin, M. E., Ohsugi, Y., Castles, J. J., Ikeda, R. M. & Ruebner, B. Anti-mu induces lymphoma in germfree congenitally athymic (nude) but not in heterozygous (nu/+) mice. J. Immunol.131, 2069–2073 (1983). CASPubMed Google Scholar
Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol.154, 180–191 (1995). CASPubMed Google Scholar
Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN γ receptors. Immunity1, 447–456. (1994). ArticleCASPubMed Google Scholar
Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA95, 7556–7561 (1998). ArticleCASPubMedPubMed Central Google Scholar
Van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med.184, 1781–1790 (1996). ArticleCASPubMed Google Scholar
Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood97, 192–197 (2001). ArticleCASPubMed Google Scholar
Smyth, M. J., Crowe, N. Y., & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from MCA-induced fibrosarcoma. Int. Immunol.13 (in the press, 2001).
Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med.192, 755–760 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol.73, 2527–2536 (1999). CASPubMedPubMed Central Google Scholar
Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8(+) T cell homeostasis by perforin and interferon-γ. Science290, 1354–1358 (2000). ArticleCASPubMed Google Scholar
Davidson, W. F., Giese, T. & Fredrickson, T. N. Spontaneous development of plasmacytoid tumors in mice with defective fas-fas ligand interactions. J. Exp. Med.187, 1825–1838 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shaukaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature (2001).
Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol.18, 217–242 (2000). ArticleCASPubMed Google Scholar
Ferrone, S. & Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today16, 487–494 (1995). ArticleCASPubMed Google Scholar
Elgert, K. D., Alleva, D. G. & Mullins, D. W. Tumor-induced immune dysfunction: the macrophage connection. J. Leukoc. Biol.64, 275–290 (1998). ArticleCASPubMed Google Scholar
Walker, P. R., Saas, P. & Dietrich, P. Y. Tumor expression of Fas ligand (CD95L) and the consequences. Curr. Opin. Immunol.10, 564–572 (1998). ArticleCASPubMed Google Scholar
Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol.35, 256–263 (1984). CASPubMed Google Scholar
Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med.184, 923–930 (1996). ArticleCASPubMed Google Scholar
Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117–120 (1997). ArticleCASPubMed Google Scholar
Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med.4, 581–587 (1998). ArticleCASPubMed Google Scholar
Chiodoni, C. et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J. Exp. Med.190, 125–133 (1999). ArticleCASPubMedPubMed Central Google Scholar
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392, 86–89 (1998). ArticleCASPubMed Google Scholar
Blachere, N. E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186, 1315–1322 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sakaguchi, S. Animal models of autoimmunity and their relevance to human diseases. Curr. Opin. Immunol.12, 684–690. (2000). ArticleCASPubMed Google Scholar
Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell101, 455–458 (2000). ArticleCASPubMed Google Scholar
Hanninen, A. & Harrison, L. C. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol. Rev.173, 109–119 (2000). ArticleCASPubMed Google Scholar
Hammond, K. J. L. et al. α/β-T cell receptor (TCR)+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med.187, 1047–1056 (1998). ArticleCASPubMedPubMed Central Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol.1, 515–520 (2000). ArticleCAS Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163, 5211–5218 (1999). CASPubMed Google Scholar
Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res.59, 3128–3133 (1999). CASPubMed Google Scholar
Seo, N., Tokura, Y., Takigawa, M. & Egawa, K. Depletion of IL-10- and TGF-β-producing regulatory γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J. Immunol.163, 242–249 (1999). CASPubMed Google Scholar