Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature407, 810–816 (2000). ArticleCASPubMed Google Scholar
Hengartner, M.O. The biochemistry of apoptosis. Nature407, 770–777 (2000). CASPubMed Google Scholar
Herr, I. & Debatin, K.M. Cellular stress response and apoptosis in cancer therapy. Blood98, 2603–2614 (2001). ArticleCASPubMed Google Scholar
Mow, B.M., Blajeski, A.L., Chandra, J. & Kaufmann, S.H. Apoptosis and the response to anticancer therapy. Curr. Opin. Oncol.13, 453–462 (2001). ArticleCASPubMed Google Scholar
Fulda, S., Susin, S.A., Kroemer, G. & Debatin, K.M. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res.58, 4453–4460 (1998). CASPubMed Google Scholar
Fulda, S., Meyer, E., Susin, S.A., Kroemer, G. & Debatin, K.M. Cell type specific activation of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene20, 1063–1075 (2001). ArticleCASPubMed Google Scholar
Fulda, S. et al. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene20, 5865–5877 (2001). ArticleCASPubMed Google Scholar
Ashkenazi, A. & Dixit, V.M. Death receptors: Signaling and modulation. Science281, 1305–1308 (1998). ArticleCASPubMed Google Scholar
Walczak, H. & Krammer, P.H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res.256, 58–66 (2000). ArticleCASPubMed Google Scholar
Deveraux, Q.L. & Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev.13, 239–252 (1999). ArticleCASPubMed Google Scholar
Wagenknecht, B. et al. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ.6, 370–376 (1999). ArticleCASPubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome _c_-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000). ArticleCASPubMed Google Scholar
Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102, 43–53 (2000). ArticleCASPubMed Google Scholar
Srinivasula, S.M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature410, 112–116 (2001). ArticleCASPubMed Google Scholar
Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature406, 855–862 (2000). ArticleCASPubMed Google Scholar
Fulda, S., Meyer, E. & Debatin, K.M. Overexpression of Bcl-2 inhibits TRAIL-induced apoptosis. Oncogene21, 2283–2294 (2002). ArticleCASPubMed Google Scholar
Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature408, 1008–1012 (2000). ArticleCASPubMed Google Scholar
Roth, W. et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in a thymic mice in the absence of neurotoxicity. Biochem. Biophys. Res. Commun.265, 479–483 (1999). ArticleCASPubMed Google Scholar
Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med.5, 157–163 (1999). ArticleCASPubMed Google Scholar
Chuntharapai, A. et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol.166, 4891–4898 (2001). ArticleCASPubMed Google Scholar
Soengas, M.S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). ArticleCASPubMed Google Scholar
Lawrence, D. et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med.7, 383–385 (2001). ArticleCASPubMed Google Scholar
Nagane, M., Huang, H.J. & Cavenee, W.K. The potential of TRAIL for cancer chemotherapy. Apoptosis6, 191–197 (2001). ArticleCASPubMed Google Scholar
Ichikawa, K. et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Med.7, 954–960 (2001). ArticleCASPubMed Google Scholar
Deng, Y., Lin, Y. & Wu, X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev.16, 33–45 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L., Yu, J., Park, B., Kinzler, K. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science290, 989–992 (2000). ArticleCASPubMed Google Scholar
LeBlanc, H. et al. Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Med.8, 274–281 (2002). ArticleCASPubMed Google Scholar
Zhang, X.D., Zhang, X.Y., Gray, C.P., Nguyen, T. & Hersey, P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res.61, 7339–7348 (2001). CASPubMed Google Scholar
Jeremias, I., Herr, I., Boehler, T. & Debatin, K.M. TRAIL / Apo-2-Ligand induced apoptosis in T-cells. Eur. J. Immunol.28, 143–152 (1998). ArticleCASPubMed Google Scholar
Hanemann, C.O. et al. Improved culture methods to expand Schwann cells with altered growth behaviour from CMT1A patients. Glia23, 89–98 (1998). ArticleCASPubMed Google Scholar
Lindgren, M., Hallbrink, M., Prochiantz, A. & Langel, U. Cell-penetrating peptides. Trends Pharmacol. Sci.21, 99–103 (2000). ArticleCASPubMed Google Scholar
Srinivasula, S.M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem.275, 36152–36457 (2000). ArticleCASPubMed Google Scholar