Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo (original) (raw)
Smith, K.A. Interleukin-2: inception, impact, and implications. Science240, 1169–1176 (1988). ArticleCASPubMed Google Scholar
Gillis, S., Gillis, A.E. & Smith, K.A. The detection of a spleen focus-forming virus neoantigen by lymphocyte-mediated cytolysis. J. Exp. Med.148, 18–31 (1978). ArticleCASPubMedPubMed Central Google Scholar
Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T-cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity11, 281–288 (1999). ArticleCASPubMed Google Scholar
Gillis, S. & Smith, K.A. Long term culture of tumour-specific cytotoxic T cells. Nature268, 154–156 (1977). ArticleCASPubMed Google Scholar
Akbar, A.N. et al. Interleukin-2 receptor common γ-chain signaling cytokines regulate activated T-cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur. J. Immunol.26, 294–299 (1996). ArticleCASPubMed Google Scholar
Lenardo, M.J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature353, 858–861 (1991). ArticleCASPubMed Google Scholar
Cousens, L.P., Orange, J.S. & Biron, C.A. Endogenous IL-2 contributes to T-cell expansion and IFN-γ production during lymphocytic choriomeningitis virus infection. J. Immunol.155, 5690–5699 (1995). CASPubMed Google Scholar
Barouch, D.H. et al. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl. Acad. Sci. USA97, 4192–4197 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kuroda, K. et al. Implantation of IL-2-containing osmotic pump prolongs the survival of superantigen-reactive T cells expanded in mice injected with bacterial superantigen. J. Immunol.157, 1422–1431 (1996). CASPubMed Google Scholar
Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell75, 253–261 (1993). ArticleCASPubMed Google Scholar
Suzuki, H. et al. Deregulated T-cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science268, 1472–1476 (1995). ArticleCASPubMed Google Scholar
Willerford, D.M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity3, 521–530 (1995). ArticleCASPubMed Google Scholar
Dai, Z., Konieczny, B.T. & Lakkis, F.G. The dual role of IL-2 in the generation and maintenance of CD8+ memory T cells. J. Immunol.165, 3031–3036 (2000). ArticleCASPubMed Google Scholar
Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCASPubMed Google Scholar
Rosenberg, S.A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med.313, 1485–1492 (1985). ArticleCASPubMed Google Scholar
Kovacs, J.A. et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N. Engl. J. Med.335, 1350–1356 (1996). ArticleCASPubMed Google Scholar
Kovacs, J.A. et al. Interleukin-2 induced immune effects in human immunodeficiency virus-infected patients receiving intermittent interleukin-2 immunotherapy. Eur. J. Immunol.31, 1351–1360 (2001). ArticleCASPubMed Google Scholar
Davey, R.T. et al. Immunologic and virologic effects of subcutaneous interleukin 2 in combination with antiretroviral therapy: a randomized controlled trial. JAMA284, 183–189 (2000). ArticleCASPubMed Google Scholar
Jacobson, E.L., Pilaro, F. & Smith, K.A. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc. Natl. Acad. Sci. USA93, 10405–10410 (1996). ArticleCASPubMedPubMed Central Google Scholar
Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). ArticleCASPubMed Google Scholar
Matloubian, M., Kolhekar, S.R., Somasundaram, T. & Ahmed, R. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J. Virol.67, 7340–7349 (1993). CASPubMedPubMed Central Google Scholar
Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998). CASPubMedPubMed Central Google Scholar
Kaech, S.M. & Ahmed, R. Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol.2, 415–422 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wong, P. & Pamer, E.G. Antigen independent CD8 T-cell proliferation. J. Immunol.166, 5864–5868 (2001). ArticleCASPubMed Google Scholar
van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol.2, 381–382 (2001). Article Google Scholar
von Herrath, M.G., Yokoyama, M., Dockter, J., Oldstone, M.B. & Whitton, J.L. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J. Virol.70, 1072–1079 (1996). CASPubMedPubMed Central Google Scholar
Lau, L.L., Jamieson, B.D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature369, 648–652 (1994). ArticleCASPubMed Google Scholar
Grayson, J.M., Murali-Krishna, K., Altman, J.D. & Ahmed, R. Gene expression in antigen-specific CD8+ T cells during viral infection. J. Immunol.166, 795–799 (2001). ArticleCASPubMed Google Scholar
Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol.165, 1733–1737 (2000). ArticleCASPubMed Google Scholar
Lotze, M.T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol.135, 2865–2875 (1985). CASPubMed Google Scholar
Lotze, M.T. et al. Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer58, 2764–2772 (1986). ArticleCASPubMed Google Scholar
Mier, J.W. et al. Induction of circulating tumor necrosis factor (TNF α) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J. Clin. Immunol.8, 426–436 (1988). ArticleCASPubMed Google Scholar
Callan, M.F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J. Exp. Med.187, 1395–1402 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wilson, J.D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS14, 225–233 (2000). ArticleCASPubMed Google Scholar
Jin, X. et al. High frequency of cytomegalovirus-specific cytotoxic T-effector cells in HLA-A*0201-positive subjects during multiple viral coinfections. J. Infect. Dis.181, 165–175 (2000). ArticleCASPubMed Google Scholar
Komanduri, K.V. et al. Direct measurement of CD4+ and CD8+ T-cell responses to CMV in HIV-1- infected subjects. Virology279, 459–470 (2001). ArticleCASPubMed Google Scholar
Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity8, 591–599 (1998). ArticleCASPubMed Google Scholar
Smith, K. Interleukin 2 immunotherapy. in Therapeutic Immunology (eds. Austen, F., Burakoff, S., Rosen, F. & Strom, T.) 240–250 (Blackwell Science, Oxford, UK, 2001). Google Scholar
Smith, K.A. et al. In vivo assessment of antiviral reactivity in chronic HIV infection. HIV Clin. Trials1, 16–22 (2000). ArticleCASPubMed Google Scholar
Smith, K.A. To cure chronic HIV infection, a new therapeutic strategy is needed. Curr. Opin. Immunol.13, 617–624 (2001). ArticleCASPubMed Google Scholar
Yee, C., Riddell, S.R. & Greenberg, P.D. Prospects for adoptive T-cell therapy. Curr. Opin. Immunol.9, 702–708 (1997). ArticleCASPubMed Google Scholar
Whitmire, J.K. et al. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T-cell responses but is dispensable for CD8 T-cell responses. J. Immunol.163, 3194–3201 (1999). CASPubMed Google Scholar