A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals (original) (raw)
Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater.9, 101–113 (2010). Article Google Scholar
De Las Heras Alarcon, C., Pennadam, S. & Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev.34, 276–285 (2005). Article Google Scholar
Von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater.10, 545–552 (2011). ArticleCAS Google Scholar
Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Mater.3, 244–248 (2004). ArticleCAS Google Scholar
Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotech.4, 773–780 (2009). ArticleCAS Google Scholar
So, M. K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnol.24, 339–343 (2006). ArticleCAS Google Scholar
Kircher, M. F. et al. A brain tumour molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Med.18, 829–834 (2012). ArticleCAS Google Scholar
Qian, X. et al. In vivo tumour targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol.26, 83–90 (2008). ArticleCAS Google Scholar
Olson, E. S. et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA107, 4311–4316 (2010). ArticleCAS Google Scholar
Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Med.15, 104–109 (2009). ArticleCAS Google Scholar
Van Dam, G. M. et al. Intraoperative tumour-specific fluorescence imaging in ovarian cancer by folate receptor- α targeting: First in-human results. Nature Med.17, 1315–1319 (2011). ArticleCAS Google Scholar
Ke, S. et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res.63, 7870–7875 (2003). CAS Google Scholar
Paik, S. et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National surgical adjuvant breast and bowel project protocol B-15. J. Natl Cancer Inst.92, 1991–1998 (2000). ArticleCAS Google Scholar
Jacobs, T. W., Gown, A. M., Yaziji, H., Barnes, M. J. & Schnitt, S. J. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am. J. Clin. Pathol.113, 251–258 (2000). ArticleCAS Google Scholar
Weis, S. M. & Cheresh, D. A. Tumour angiogenesis: Molecular pathways and therapeutic targets. Nature Med.17, 1359–1370 (2011). ArticleCAS Google Scholar
Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nature Rev. Drug Discov.6, 273–286 (2007). ArticleCAS Google Scholar
Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nature Rev. Cancer11, 671–677 (2011). ArticleCAS Google Scholar
Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed.50, 6109–6114 (2011). ArticleCAS Google Scholar
Bachelder, E. M., Beaudette, T. T., Broaders, K. E., Dashe, J. & Frechet, J. M. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc.130, 10494–10495 (2008). ArticleCAS Google Scholar
Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed.42, 4640–4643 (2003). ArticleCAS Google Scholar
Griset, A. P. et al. Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc.131, 2469–2471 (2009). ArticleCAS Google Scholar
Lee, E. S., Na, K. & Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett.5, 325–329 (2005). ArticleCAS Google Scholar
Potineni, A., Lynn, D. M., Langer, R. & Amiji, M. M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release86, 223–234 (2003). ArticleCAS Google Scholar
Zhou, K. et al. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc.134, 7803–7811 (2012). ArticleCAS Google Scholar
Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest.118, 3930–3942 (2008). CAS Google Scholar
Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release65, 271–284 (2000). ArticleCAS Google Scholar
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer4, 891–899 (2004). ArticleCAS Google Scholar
Kleiter, M. M. et al. A comparison of oral and intravenous pimonidazole in canine tumors using intravenous CCI-103F as a control hypoxia marker. Int. J. Radiat. Oncol. Biol. Phys.64, 592–602 (2006). ArticleCAS Google Scholar
Huang, X. et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano4, 5887–5896 (2010). ArticleCAS Google Scholar
Moghimi, S. M., Hedeman, H., Muir, I. S., Illum, L. & Davis, S. S. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim. Biophys. Acta1157, 233–240 (1993). ArticleCAS Google Scholar
Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest.121, 3786–3788 (2011). ArticleCAS Google Scholar
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science324, 1029–1033 (2009). ArticleCAS Google Scholar
Dhanabal, M. et al. Endostatin induces endothelial cell apoptosis. J. Biol. Chem.274, 11721–11726 (1999). ArticleCAS Google Scholar
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst.82, 4–6 (1990). ArticleCAS Google Scholar
Nasongkla, N. et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.6, 2427–2430 (2006). ArticleCAS Google Scholar