Rosi, N.L. & Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev.105, 1547–1562 (2005). ArticleCASPubMed Google Scholar
Cao, Y.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science297, 1536–1540 (2002). ArticleCASPubMed Google Scholar
Gao, X. et al. In-vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16, 63–72 (2005). ArticleCASPubMed Google Scholar
Nie, S.M., Xing, Y., Kim, G.J. & Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.9, 257–288 (2007). ArticleCASPubMed Google Scholar
Yezhelyev, M.V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol.7, 657–667 (2006). ArticleCASPubMed Google Scholar
Gao, X., Cui, Y.Y., Levenson, R.M., Chung, L.W.K. & Nie, S.M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22, 969–976 (2004). ArticleCASPubMed Google Scholar
Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2, 47–52 (2007). ArticleCASPubMed Google Scholar
Weissleder, R., Kelly, K., Sun, E.Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol.23, 1418–1423 (2005). ArticleCASPubMed Google Scholar
Lee, E.S., Na, K. & Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release91, 103–113 (2003). ArticleCASPubMed Google Scholar
Moghimi, S.M., Hunter, A.C. & Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev.53, 283–318 (2001). CASPubMed Google Scholar
Couvreur, P. & Vauthier, C. Nanotechnology: Intelligent design to treat complex diseases. Pharm. Res.23, 1417–1450 (2006). ArticleCASPubMed Google Scholar
Duncan, R. Polymer conjugate as anticancer nanomedicines. Nat. Rev. Cancer6, 688–701 (2006). ArticleCASPubMed Google Scholar
Hood, J.D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science296, 2404–2407 (2002). ArticleCASPubMed Google Scholar
Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med.348, 2491–2499 (2003). ArticlePubMed Google Scholar
McCarthy, J.R., Kelly, K.A., Sun, E.Y. & Weissleder, R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine2, 153–167 (2007). ArticleCASPubMed Google Scholar
Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat. Biotechnol.21, 41–46 (2003). ArticleCASPubMed Google Scholar
Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.22, 93–97 (2004). ArticleCASPubMed Google Scholar
Rhyner, M.N. et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine1, 209–217 (2006). ArticleCASPubMed Google Scholar
Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc.2, 1152–1165 (2007). ArticleCASPubMed Google Scholar
Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In-vivo imaging of siRNA delivery and silencing in tumors. Nat. Med.13, 372–377 (2007). ArticleCASPubMed Google Scholar
Merchant, B. Gold, the noble metal and the paradoxes of its toxicology. Biologicals26, 49–59 (1998). ArticleCASPubMed Google Scholar
Root, S.W., Andrews, G.A., Kniseley, R.M. & Tyor, M.P. The distribution and radiation effects of intravenously administered colloidal gold-198 in man. Cancer7, 856–866 (1954). ArticleCASPubMed Google Scholar
Paciotti, G.F., Kingston, D.G.I. & Tamarkin, L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res.67, 47–54 (2006). ArticleCAS Google Scholar
Paciotti, G.F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv.11, 169–183 (2004). ArticleCASPubMed Google Scholar
James, W.D., Hirsch, L.R., West, J.L., O'Neal, P.D. & Payne, J.D. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem.271, 455–459 (2007). ArticleCAS Google Scholar
Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1, 325–327 (2005). ArticleCASPubMed Google Scholar
Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21, 10644–10654 (2005). ArticleCASPubMed Google Scholar
Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev.99, 2957–2976 (1999). ArticleCASPubMed Google Scholar
Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev.27, 241–250 (1998). ArticleCAS Google Scholar
Nie, S.M. & Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science275, 1102–1106 (1997). ArticleCASPubMed Google Scholar
Kneipp, K. et al. Single molecule detection using surface enhanced Raman scattering. Phys. Rev. Lett.78, 1667–1670 (1997). ArticleCAS Google Scholar
Michaels, A.M., Nirmal, M. & Brus, L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc.121, 9932–9939 (1999). ArticleCAS Google Scholar
Tian, J.H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc.128, 14748–14749 (2006). ArticleCASPubMed Google Scholar
Moore, B.D. et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol.22, 1133–1138 (2004). ArticleCASPubMed Google Scholar
Krug, J.T., Wang, G.D., Emory, S.R. & Nie, S.M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc.121, 9208–9214 (1999). ArticleCAS Google Scholar
Doering, W.E. & Nie, S.M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem.75, 6171–6176 (2003). ArticleCASPubMed Google Scholar
Paez, J.G. et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). ArticleCASPubMed Google Scholar
Mahmood, U. & Weissleder, R. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther.2, 489–496 (2003). CASPubMed Google Scholar
Wuelfing, W.P., Gross, S.M., Miles, D.T. & Murray, R.W. Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc.120, 12696–12697 (1998). ArticleCAS Google Scholar
Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface — Evidence for a charge-transfer excitation. Phys. Rev. Lett.57, 1793–1796 (1986). ArticleCASPubMed Google Scholar
Gobin, A.M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.7, 1929–1934 (2007). ArticleCASPubMed Google Scholar
Herbst, R.S. & Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors — A new paradigm for cancer therapy. Cancer94, 1593–1611 (2002). ArticleCASPubMed Google Scholar
Reuter, C.W.M., Morgan, M.A. & Eckardt, A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br. J. Cancer96, 408–416 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ntziachristos, V., Bremer, C. & Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol.13, 195–208 (2003). PubMed Google Scholar
Jain, R.K. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng.1, 241–263 (1999). ArticleCASPubMed Google Scholar
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46, 6387–6392 (1986). CASPubMed Google Scholar
Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128, 2115–2120 (2006). ArticleCASPubMed Google Scholar
Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.H.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol.24, 848–851 (2006). ArticleCASPubMed Google Scholar
Ntziachristos, V., Ripoll, J., Wang, L.H.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol.23, 313–320 (2005). ArticleCASPubMed Google Scholar
Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003). ArticleCASPubMedPubMed Central Google Scholar