Site-specific integration and tailoring of cassette design for sustainable gene transfer (original) (raw)
Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther.16, 1241–1246 (2005). ArticleCAS Google Scholar
Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet.12, 301–315 (2011). ArticleCAS Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol.25, 1298–1306 (2007). ArticleCAS Google Scholar
Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell5, 97–110 (2009). ArticleCAS Google Scholar
Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell31, 294–301 (2008). ArticleCAS Google Scholar
Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). Article Google Scholar
Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther.15, 1463–1468 (2008). ArticleCAS Google Scholar
Gondo, Y., Fukumura, R., Murata, T. & Makino, S. Next-generation gene targeting in the mouse for functional genomics. BMB Rep.42, 315–323 (2009). ArticleCAS Google Scholar
Frazer, K.A., Murray, S.S., Schork, N.J. & Topol, E.J. Human genetic variation and its contribution to complex traits. Nat. Rev. Genet.10, 241–251 (2009). ArticleCAS Google Scholar
de Boer, B.A., Ruijter, J.M., Voorbraak, F.P. & Moorman, A.F. More than a decade of developmental gene expression atlases: where are we now? Nucleic Acids Res.37, 7349–7359 (2009). ArticleCAS Google Scholar
Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science326, 818–823 (2009). ArticleCAS Google Scholar
Aiuti, A. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med.360, 447–458 (2009). ArticleCAS Google Scholar
Samulski, R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J.10, 3941–3950 (1991). ArticleCAS Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). ArticleCAS Google Scholar
Smith, J.R. et al. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells26, 496–504 (2008). ArticleCAS Google Scholar
Henckaerts, E. et al. Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proc. Natl. Acad. Sci. USA106, 7571–7576 (2009). ArticleCAS Google Scholar
Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol.27, 851–857 (2009). ArticleCAS Google Scholar
Zou, J. et al. Oxidase deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease mediated safe harbor targeting. Blood117, 5561–5572 (2011). ArticleCAS Google Scholar
Matrai, J. et al. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology53, 1696–1707 (2011). ArticleCAS Google Scholar
Hafenrichter, D.G. et al. Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood84, 3394–3404 (1994). CASPubMed Google Scholar
Okuyama, T. et al. Liver-directed gene therapy: a retroviral vector with a complete LTR and the ApoE enhancer-alpha 1-antitrypsin promoter dramatically increases expression of human alpha 1-antitrypsin in vivo. Hum. Gene Ther.7, 637–645 (1996). ArticleCAS Google Scholar
Miao, C.H. et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol. Ther.1, 522–532 (2000). ArticleCAS Google Scholar
Ogata, T., Kozuka, T. & Kanda, T. Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. J. Virol.77, 9000–9007 (2003). ArticleCAS Google Scholar
Li, C. et al. A small regulatory element from chromosome 19 enhances liver-specific gene expression. Gene Ther.16, 43–51 (2009). Article Google Scholar
Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet.12, 7–18 (2011). Article Google Scholar
Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature467, 318–322 (2010). ArticleCAS Google Scholar
Papapetrou, E.P. et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat. Biotechnol.29, 73–78 (2011). ArticleCAS Google Scholar
Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet.10, 833–844 (2009). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol.25, 778–785 (2007). ArticleCAS Google Scholar
Bondanza, A. et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood107, 1828–1836 (2006). ArticleCAS Google Scholar
Kaneko, S. et al. IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood113, 1006–1015 (2009). ArticleCAS Google Scholar
Riddell, S.R. & Greenberg, P.D. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J. Immunol. Methods128, 189–201 (1990). ArticleCAS Google Scholar
Vescovi, A.L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol.156, 71–83 (1999). ArticleCAS Google Scholar
Vescovi, A.L. & Snyder, E.Y. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol.9, 569–598 (1999). ArticleCAS Google Scholar
Neri, M. et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells26, 505–516 (2008). ArticleCAS Google Scholar
Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol.25, 681–686 (2007). ArticleCAS Google Scholar
Roy, N.S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12, 1259–1268 (2006). ArticleCAS Google Scholar
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45 (2001). ArticleCAS Google Scholar
Zhao, S. & Fernald, R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol.12, 1047–1064 (2005). ArticleCAS Google Scholar
Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol.8, R19 (2007). Article Google Scholar
Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc.1, 729–748 (2006). ArticleCAS Google Scholar
Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell Biol.14, 7219–7225 (1994). ArticleCAS Google Scholar
Masternak, K., Peyraud, N., Krawczyk, M., Barras, E. & Reith, W. Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat. Immunol.4, 132–137 (2003). ArticleCAS Google Scholar