Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers (original) (raw)

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

In the version of this article initially published, the authors claimed that with the tool cctbx.xfel, weak diffraction signals can be measured using fewer crystal specimens than are needed for the previously available program CrystFEL. However, there is not enough evidence to support this claim. The inaccurate statements have been corrected in the HTML and PDF versions of the article.

References

  1. Neutze, R. et al. Nature 406, 752–757 (2000).
    Article CAS PubMed Google Scholar
  2. Alonso-Mori, R. et al. Proc. Natl. Acad. Sci. USA 109, 19103–19107 (2012).
    CAS PubMed PubMed Central Google Scholar
  3. Kern, J. et al. Science 340, 491–495 (2013).
    CAS PubMed PubMed Central Google Scholar
  4. Chapman, H.N. et al. Nature 470, 73–77 (2011).
    CAS PubMed PubMed Central Google Scholar
  5. Koopmann, R. et al. Nat. Methods 9, 259–262 (2012).
    CAS PubMed PubMed Central Google Scholar
  6. Redecke, L. et al. Science 339, 227–230 (2013).
    CAS PubMed Google Scholar
  7. Bourenkov, G.P. & Popov, A.N. Acta Crystallogr. D Biol. Crystallogr. 62, 58–64 (2006).
    PubMed Google Scholar
  8. Sauter, N.K. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 1274–1282 (2013).
    CAS PubMed PubMed Central Google Scholar
  9. White, T.A. et al. J. Appl. Cryst. 45, 335–341 (2012).
    CAS Google Scholar
  10. Boutet, S. et al. Science 337, 362–364 (2012).
    CAS PubMed PubMed Central Google Scholar
  11. Sauter, N.K., Grosse-Kunstleve, R.W. & Adams, P.D. J. Appl. Cryst. 37, 399–409 (2004).
    CAS Google Scholar
  12. Sauter, N.K. & Poon, B.K. J. Appl. Cryst. 43, 611–616 (2010).
    CAS Google Scholar
  13. Powell, H.R., Johnson, O. & Leslie, A.G. Acta Crystallogr. D Biol. Crystallogr. 69, 1195–1203 (2013).
    CAS PubMed PubMed Central Google Scholar
  14. Kirian, R.A. et al. Acta Crystallogr. A 67, 131–140 (2011).
    CAS PubMed PubMed Central Google Scholar
  15. Karplus, P.A. & Diederichs, K. Science 336, 1030–1033 (2012).
    CAS PubMed PubMed Central Google Scholar
  16. Kirian, R.A. et al. Opt. Express 18, 5713–5723 (2010).
    PubMed Google Scholar
  17. Johansson, L.C. et al. Nat. Methods 9, 263–265 (2012).
    CAS PubMed PubMed Central Google Scholar
  18. Winkler, F.K., Schutt, C.E. & Harrison, S.C. Acta Crystallogr. A 35, 901–911 (1979).
    CAS Google Scholar
  19. Rossmann, M.G. et al. J. Appl. Cryst. 12, 570–581 (1979).
    CAS Google Scholar
  20. Zhu, D. et al. Appl. Phys. Lett. 101, 034103 (2012).
    Google Scholar
  21. Inouye, K. J. Biochem. 112, 335–340 (1992).
    CAS PubMed Google Scholar
  22. Titani, K. et al. Nature 238, 35–37 (1972).
    CAS Google Scholar
  23. Boutet, S. & Williams, G.J. New J. Phys. 12, 035024 (2010).
    Google Scholar
  24. Sierra, R.G. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 1584–1587 (2012).
    CAS PubMed PubMed Central Google Scholar
  25. Bogan, M.J. Anal. Chem. 85, 3464–3471 (2013).
    CAS PubMed Google Scholar
  26. Hart, P. et al. Proc. SPIE 8504, 85040C (2012).
    Google Scholar
  27. Maia, F.R.N.C. Nat. Methods 9, 854–855 (2012).
    CAS PubMed Google Scholar
  28. Zhang, Z. et al. J. Appl. Cryst. 39, 112–119 (2006).
    CAS Google Scholar
  29. Steller, I., Bolotovsky, R. & Rossmann, M.G. J. Appl. Cryst. 30, 1036–1040 (1997).
    CAS Google Scholar
  30. Rossmann, M.G. & van Beek, C.G. Acta Crystallogr. D Biol. Crystallogr. 55, 1631–1640 (1999).
    CAS PubMed Google Scholar
  31. Sauter, N.K., Grosse-Kunstleve, R.W. & Adams, P.D. J. Appl. Cryst. 39, 158–168 (2006).
    CAS Google Scholar
  32. Kern, J. et al. Proc. Natl. Acad. Sci. USA 109, 9721–9726 (2012).
    CAS PubMed PubMed Central Google Scholar
  33. Giordano, R. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 649–658 (2012).
    CAS PubMed Google Scholar
  34. Diederichs, K. & Karplus, P.A. Acta Crystallogr. D Biol. Crystallogr. 69, 1215–1222 (2013).
    CAS PubMed PubMed Central Google Scholar
  35. Paithankar, K.S. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 608–618 (2011).
    CAS PubMed Google Scholar
  36. White, T.A. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 1231–1240 (2013).
    CAS PubMed PubMed Central Google Scholar
  37. Nave, C. Acta Crystallogr. D Biol. Crystallogr. 54, 848–853 (1998).
    CAS PubMed Google Scholar
  38. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).
    CAS PubMed Google Scholar
  39. Emma, P. et al. Nat. Photonics 4, 641–647 (2010).
    CAS Google Scholar
  40. Greenhough, T.J. & Helliwell, J.R. J. Appl. Cryst. 15, 338–351 (1982).
    CAS Google Scholar
  41. Greenhough, T.J. & Helliwell, J.R. J. Appl. Cryst. 15, 493–508 (1982).
    CAS Google Scholar
  42. Greenhough, T.J., Helliwell, J.R. & Rule, S.A. J. Appl. Cryst. 16, 242–250 (1983).
    CAS Google Scholar
  43. Ren, Z. & Moffat, K. J. Appl. Cryst. 28, 461–481 (1995).
    CAS Google Scholar
  44. Dauter, Z. Acta Crystallogr. D Biol. Crystallogr. 55, 1703–1717 (1999).
    CAS PubMed Google Scholar
  45. Diederichs, K. Acta Crystallogr. D Biol. Crystallogr. 65, 535–542 (2009).
    CAS PubMed Google Scholar
  46. Schreurs, A.M.M., Xian, X. & Kroon-Batenburg, L.M.J. J. Appl. Cryst. 43, 70–82 (2009).
    Google Scholar
  47. Porta, J. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 628–638 (2011).
    CAS PubMed PubMed Central Google Scholar
  48. Bolotovsky, R. & Coppens, P. J. Appl. Cryst. 30, 65–70 (1997).
    CAS Google Scholar
  49. Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).
    PubMed Google Scholar
  50. Kahn, R. et al. J. Appl. Cryst. 15, 330–337 (1982).
    CAS Google Scholar
  51. Brünger, A.T. Nature 355, 472–475 (1992).
    PubMed Google Scholar
  52. Strüder, L. et al. Nucl. Instrum. Methods Phys. Res. A 614, 483–496 (2010).
    Google Scholar
  53. Huang, T.C. et al. J. Appl. Cryst. 26, 180–184 (1993).
    CAS Google Scholar
  54. McCoy, A.J. et al. J. Appl. Cryst. 40, 658–674 (2007).
    CAS Google Scholar
  55. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    CAS PubMed PubMed Central Google Scholar
  56. English, A.C. et al. Proteins 37, 628–640 (1999).
    CAS PubMed Google Scholar
  57. Terwilliger, T.C. et al. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).
    CAS PubMed Google Scholar
  58. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).
    CAS PubMed PubMed Central Google Scholar
  59. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
    CAS PubMed Google Scholar
  60. Urzhumtseva, L. et al. Acta Crystallogr. D Biol. Crystallogr. 65, 297–300 (2009).
    CAS PubMed PubMed Central Google Scholar
  61. Afonine, P.V. et al. J. Appl. Cryst. 43, 669–676 (2010).
    CAS Google Scholar

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants GM095887 and GM102520 and Director, Office of Science, US Department of Energy (DOE) under contract DE-AC02-05CH11231 for data-processing methods (N.K.S.); Director, DOE Office of Science, Office of Basic Energy Sciences (OBES), Chemical Sciences, Geosciences and Biosciences Division (CSGB) under contract DE-AC02-05CH11231 (J.Y. and V.K.Y.); NIH grant GM055302 (V.K.Y.); and NIH grant P41GM103393 (U.B.). Sample injection was supported by LCLS (M.J.B. and D.W.S.) and the Atomic, Molecular and Optical Science program, CSGB Division, OBES, DOE (M.J.B.), and through the SLAC National Accelerator Laboratory Directed Research and Development program (M.J.B. and H.L.). J.M. was supported by the Artificial Leaf Project Umeå (K&A Wallenberg Foundation), the Solar Fuels Strong Research Environment Umeå (Umeå University), Vetenskapsrådet and Swedish Energy Agency (Energimyndigheten). Experiments were carried out at the LCLS at SLAC, an Office of Science User Facility operated for the DOE by Stanford University. We thank A. Perazzo, M. Dubrovin, I. Ofte, and A. Salnikov for collaboration on data analysis, and C. Kenney for expertise related to the CSPAD detector.

Author information

Author notes

  1. Richard J Gildea
    Present address: Present address: Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK.,

Authors and Affiliations

  1. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
    Johan Hattne, Nathaniel Echols, Rosalie Tran, Jan Kern, Richard J Gildea, Aaron S Brewster, Benedikt Lassalle-Kaiser, Alyssa Lampe, Guangye Han, Sheraz Gul, Petrus H Zwart, Ralf W Grosse-Kunstleve, Junko Yano, Vittal K Yachandra, Paul D Adams & Nicholas K Sauter
  2. Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California, USA
    Roberto Alonso-Mori, Despina Milathianaki, Alan R Fry, Alan Miahnahri, William E White, Donald W Schafer, M Marvin Seibert, Jason E Koglin, Michael J Bogan, Marc Messerschmidt, Garth J Williams, Sébastien Boutet & Uwe Bergmann
  3. Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, Berlin, Germany
    Carina Glöckner, Julia Hellmich, Dörte DiFiore & Athina Zouni
  4. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA
    Hartawan Laksmono, Raymond G Sierra & Michael J Bogan
  5. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
    Dimosthenis Sokaras, Tsu-Chien Weng, Jonas Sellberg & Matthew J Latimer
  6. Department of Physics, AlbaNova, Stockholm University, Stockholm, Sweden
    Jonas Sellberg
  7. European Synchrotron Radiation Facility, Grenoble, France
    Pieter Glatzel
  8. Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
    Johannes Messinger
  9. Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
    Athina Zouni

Authors

  1. Johan Hattne
    You can also search for this author inPubMed Google Scholar
  2. Nathaniel Echols
    You can also search for this author inPubMed Google Scholar
  3. Rosalie Tran
    You can also search for this author inPubMed Google Scholar
  4. Jan Kern
    You can also search for this author inPubMed Google Scholar
  5. Richard J Gildea
    You can also search for this author inPubMed Google Scholar
  6. Aaron S Brewster
    You can also search for this author inPubMed Google Scholar
  7. Roberto Alonso-Mori
    You can also search for this author inPubMed Google Scholar
  8. Carina Glöckner
    You can also search for this author inPubMed Google Scholar
  9. Julia Hellmich
    You can also search for this author inPubMed Google Scholar
  10. Hartawan Laksmono
    You can also search for this author inPubMed Google Scholar
  11. Raymond G Sierra
    You can also search for this author inPubMed Google Scholar
  12. Benedikt Lassalle-Kaiser
    You can also search for this author inPubMed Google Scholar
  13. Alyssa Lampe
    You can also search for this author inPubMed Google Scholar
  14. Guangye Han
    You can also search for this author inPubMed Google Scholar
  15. Sheraz Gul
    You can also search for this author inPubMed Google Scholar
  16. Dörte DiFiore
    You can also search for this author inPubMed Google Scholar
  17. Despina Milathianaki
    You can also search for this author inPubMed Google Scholar
  18. Alan R Fry
    You can also search for this author inPubMed Google Scholar
  19. Alan Miahnahri
    You can also search for this author inPubMed Google Scholar
  20. William E White
    You can also search for this author inPubMed Google Scholar
  21. Donald W Schafer
    You can also search for this author inPubMed Google Scholar
  22. M Marvin Seibert
    You can also search for this author inPubMed Google Scholar
  23. Jason E Koglin
    You can also search for this author inPubMed Google Scholar
  24. Dimosthenis Sokaras
    You can also search for this author inPubMed Google Scholar
  25. Tsu-Chien Weng
    You can also search for this author inPubMed Google Scholar
  26. Jonas Sellberg
    You can also search for this author inPubMed Google Scholar
  27. Matthew J Latimer
    You can also search for this author inPubMed Google Scholar
  28. Pieter Glatzel
    You can also search for this author inPubMed Google Scholar
  29. Petrus H Zwart
    You can also search for this author inPubMed Google Scholar
  30. Ralf W Grosse-Kunstleve
    You can also search for this author inPubMed Google Scholar
  31. Michael J Bogan
    You can also search for this author inPubMed Google Scholar
  32. Marc Messerschmidt
    You can also search for this author inPubMed Google Scholar
  33. Garth J Williams
    You can also search for this author inPubMed Google Scholar
  34. Sébastien Boutet
    You can also search for this author inPubMed Google Scholar
  35. Johannes Messinger
    You can also search for this author inPubMed Google Scholar
  36. Athina Zouni
    You can also search for this author inPubMed Google Scholar
  37. Junko Yano
    You can also search for this author inPubMed Google Scholar
  38. Uwe Bergmann
    You can also search for this author inPubMed Google Scholar
  39. Vittal K Yachandra
    You can also search for this author inPubMed Google Scholar
  40. Paul D Adams
    You can also search for this author inPubMed Google Scholar
  41. Nicholas K Sauter
    You can also search for this author inPubMed Google Scholar

Contributions

J. Hattne, J.K., J.Y., U.B., V.K.Y., P.D.A. and N.K.S. conceived of the new data-processing methods and analyzed the data; J. Hattne, N.E., R.J.G., A.S.B., R.W.G.-K., P.H.Z., M.M., P.D.A. and N.K.S. wrote the data-processing software; U.B., J.Y., V.K.Y., J.K., R.A.-M., J.M., A.Z., N.K.S., G.J.W., S.B., A.R.F., A.M., D.M., D.W.S., W.E.W. and M.J.B. designed the experiment; R.T., C.G., J. Hellmich, D.D., A.L., G.H., J.K. and A.Z. prepared samples; S.B., J.E.K., M.M., M.M.S., G.J.W. operated the CXI instrument; M.J.B., H.L., R.G.S., J.K., J.M., B.L.-K., S.G., R.T., C.G., J. Hellmich, J.S., D.W.S., A.M. and G.J.W. developed, tested and ran the sample delivery system; R.A.-M., U.B., M.J.B., S.B., N.E., R.J.G., P.G., C.G.,S.G., G.H., J.Hattne., J.Hellmich, J.K., J.E.K., H.L., A.L., B.L.-K., D.M., M.M., J.M., N.K.S., M.M.S., J.S., R.G.S., D.S., R.T., T.-C.W., G.J.W., V.K.Y., J.Y. and A.Z. performed the LCLS experiment; J. Hattne, N.E., J.K., J.Y., U.B., V.K.Y., P.D.A. and N.K.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence toNicholas K Sauter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

About this article

Cite this article

Hattne, J., Echols, N., Tran, R. et al. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.Nat Methods 11, 545–548 (2014). https://doi.org/10.1038/nmeth.2887

Download citation