Optogenetics: the age of light (original) (raw)

Nature Methods volume 11, pages 1012–1014 (2014)Cite this article

Subjects

The optogenetic revolution is transforming neuroscience. The dramatic recent progress in using light to both control and read out neural activity has highlighted the need for better probes, improved light delivery and more careful interpretation of results, which will all be required for optogenetics to fully realize its remarkable potential.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Subscribe to this journal

Receive 12 print issues and online access

$259.00 per year

only $21.58 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Figure 1: Optogenetics can be applied at all levels of brain function.

Kim Caesar/Nature Publishing Group

References

  1. Scanziani, M. & Häusser, M. Nature 461, 930–939 (2009).
    Article CAS PubMed Google Scholar
  2. Hill, D.K. & Keynes, R.D. J. Physiol. 108, 278–281 (1949).
    Article PubMed PubMed Central Google Scholar
  3. Crick, F.H. Sci. Am. 241, 219–232 (1979).
    Article CAS PubMed Google Scholar
  4. Deisseroth, K. et al. J. Neurosci. 26, 10380–10386 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  5. Bargmann, C. et al. BRAIN 2025: a scientific vision. Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH http://www.nih.gov/science/brain/2025/ (US National Institutes of Health, 2014).
  6. Sahel, J.A. & Roska, B. Annu. Rev. Neurosci. 36, 467–488 (2013).
    Article CAS PubMed Google Scholar
  7. Deisseroth, K. Nature 505, 309–317 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  8. Packer, A.M. et al. Nat. Methods 9, 1202–1205 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  9. Prakash, R. et al. Nat. Methods 9, 1171–1179 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  10. Yizhar, O. et al. Nature 477, 171–178 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  11. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. Nat. Neurosci. 16, 1499–1508 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  12. Kato, H.E. et al. Nature 482, 369–374 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  13. Berndt, A., Lee, S.Y., Ramakrishnan, C. & Deisseroth, K. Science 344, 420–424 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  14. Wietek, J. et al. Science 344, 409–412 (2014).
    Article CAS PubMed Google Scholar
  15. Chow, B.Y. et al. Nature 463, 98–102 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  16. Chuong, A.S. et al. Nat. Neurosci. 17, 1123–1129 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  17. Chen, T.W. et al. Nature 499, 295–300 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  18. Thestrup, T. et al. Nat. Methods 11, 175–182 (2014).
    Article CAS PubMed Google Scholar
  19. Hochbaum, D.R. et al. Nat. Methods 11, 825–833 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  20. Kravitz, A.V. & Bonci, A. Front. Behav. Neurosci. 7, 169 (2013).
    Article PubMed PubMed Central Google Scholar
  21. Liu, X. et al. Nature 484, 381–385 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  22. Ramirez, S. et al. Science 341, 387–391 (2013).
    Article CAS PubMed Google Scholar
  23. Schoenenberger, P., Scharer, Y.P. & Oertner, T.G. Exp. Physiol. 96, 34–39 (2011).
    Article PubMed Google Scholar
  24. Jackman, S.L., Beneduce, B.M., Drew, I.R. & Regehr, W.G. J. Neurosci. 34, 7704–7714 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  25. Packer, A.M., Roska, B. & Häusser, M. Nat. Neurosci. 16, 805–815 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  26. Dana, H. et al. PLoS ONE 9, e108697 (2014).
    Article PubMed PubMed Central Google Scholar
  27. Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. E. Front. Neural Circuits 7, 8 (2013).
    CAS PubMed PubMed Central Google Scholar
  28. Tian, L. et al. Nat. Methods 6, 875–881 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  29. Cao, G. et al. Cell 154, 904–913 (2013).
    Article CAS PubMed Google Scholar
  30. Nikolenko, V. et al. Front. Neural Circuits 2, 5 (2008).
    Article PubMed PubMed Central Google Scholar
  31. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Nat. Protoc. 4, 862–869 (2009).
    CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Michael Häusser is at the Wolfson Institute for Biomedical Research and in the Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,
    Michael Häusser

Authors

  1. Michael Häusser
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMichael Häusser.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

About this article

Cite this article

Häusser, M. Optogenetics: the age of light.Nat Methods 11, 1012–1014 (2014). https://doi.org/10.1038/nmeth.3111

Download citation

This article is cited by