Cloning of short hairpin RNAs for gene knockdown in mammalian cells (original) (raw)

References

  1. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).
    Article CAS Google Scholar
  2. Paddison, P.J. & Hannon, G.J. siRNAs and shRNA: skeleton keys to the human genome. Curr. Opin. Mol. Ther. 5, 217–224 (2003).
    CAS PubMed Google Scholar
  3. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  4. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. 98, 9742–9747 (2001).
    Article CAS Google Scholar
  5. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).
    Article CAS Google Scholar
  6. Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).
    Article CAS Google Scholar
  7. Paddison, P.J., Caudy, A.A. & Hannon, G.J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. 99, 1443–1448 (2002).
    Article CAS Google Scholar
  8. Paddison, P., Caudy A.A., Bernstein, E., Hannon G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).
    Article CAS Google Scholar
  9. McCaffrey, A.P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).
    Article CAS Google Scholar
  10. Hemann, M.T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400 (2003).
    Article CAS Google Scholar
  11. Carmell, M.A., Zhang, L., Conklin, D.S., Hannon G.J. & Rosenquist, T.A. Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91–92 (2003).
    Article CAS Google Scholar
  12. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).
    Article CAS Google Scholar
  13. Paddison, P.J., Caudy, A.A., Sachidanandam, R. & Hannon, G.J. Short hairpin activated gene silencing in mammalian cell. Methods Mol. Biol. 265, 85–100 (2004).
    CAS PubMed Google Scholar
  14. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).
    Article CAS Google Scholar
  15. Brummelkamp, T.R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).
    Article CAS Google Scholar
  16. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).
    Article CAS Google Scholar
  17. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).
    Article CAS Google Scholar
  18. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).
    Article CAS Google Scholar
  19. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 9, 1327–1333 (2002).
    Article CAS Google Scholar

Download references