Real-time monitoring of receptor and G-protein interactions in living cells (original) (raw)

References

  1. Bockaert, J., Claeysen, S., Becamel, C., Pinloche, S. & Dumuis, A. G protein-coupled receptors: dominant players in cell-cell communication. Int. Rev. Cytol. 212, 63–132 (2002).
    Article CAS Google Scholar
  2. Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).
    Article CAS Google Scholar
  3. Bourne, H.R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9, 134–142 (1997).
    Article CAS Google Scholar
  4. Cabrera-Vera, T.M. et al. Insights into G protein structure, function, and regulation. Endocr. Rev. 24, 765–781 (2003).
    Article CAS Google Scholar
  5. Bouvier, M. Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274–286 (2001).
    Article CAS Google Scholar
  6. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).
    Article CAS Google Scholar
  7. Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).
    CAS PubMed Google Scholar
  8. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).
    Article CAS Google Scholar
  9. Bunemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003).
    Article Google Scholar
  10. Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).
    Article CAS Google Scholar
  11. Yu, J.Z. & Rasenick, M.M. Real-time visualization of a fluorescent G(alpha)(s): dissociation of the activated G protein from plasma membrane. Mol. Pharmacol. 61, 352–359 (2002).
    Article CAS Google Scholar
  12. Evanko, D.S., Thiyagarajan, M.M., Siderovski, D.P. & Wedegaertner, P.B. Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J. Biol. Chem. 276, 23945–23953 (2001).
    Article CAS Google Scholar
  13. Wenzel-Seifert, K. & Seifert, R. Molecular analysis of beta(2)-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins. Mol. Pharmacol. 58, 954–966 (2000).
    Article CAS Google Scholar
  14. Huang, J.S., Ramamurthy, S.K., Lin, X. & Le Breton, G.C. Cell signalling through thromboxane A2 receptors. Cell. Signal. 16, 521–533 (2004).
    Article CAS Google Scholar
  15. Kinsella, B.T. Thromboxane A2 signalling in humans: a 'Tail' of two receptors. Biochem. Soc. Trans. 29, 641–654 (2001).
    Article CAS Google Scholar
  16. Crespo, P., Cachero, T.G., Xu, N. & Gutkind, J.S. Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition. J. Biol. Chem. 270, 25259–25265 (1995).
    Article CAS Google Scholar
  17. Chung, F.Z., Wang, C.D., Potter, P.C., Venter, J.C. & Fraser, C.M. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J. Biol. Chem. 263, 4052–4055 (1988).
    CAS PubMed Google Scholar
  18. Chidiac, P., Nouet, S. & Bouvier, M. Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor. Mol. Pharmacol. 50, 662–669 (1996).
    CAS PubMed Google Scholar
  19. Vilardaga, J.P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M.J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).
    Article CAS Google Scholar
  20. Rebois, R.V., Warner, D.R. & Basi, N.S. Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell. Signal. 9, 141–151 (1997).
    Article CAS Google Scholar
  21. Levitzki, A. & Klein, S. G-protein subunit dissociation is not an integral part of G-protein action. Chembiochem. 3, 815–818 (2002).
    Article CAS Google Scholar
  22. Jones, S.B., Leone, S.L. & Bylund, D.B. Desensitization of the alpha-2 adrenergic receptor in HT29 and opossum kidney cell lines. J. Pharmacol. Exp. Ther. 254, 294–300 (1990).
    CAS PubMed Google Scholar
  23. Benovic, J.L., Bouvier, M., Caron, M.G. & Lefkowitz, R.J. Regulation of adenylyl cyclase-coupled beta-adrenergic receptors. Annu. Rev. Cell Biol. 4, 405–428 (1988).
    Article CAS Google Scholar
  24. Clark, W.A., Jian, X., Chen, L. & Northup, J.K. Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance. Biochem. J. 358, 389–397 (2001).
    Article CAS Google Scholar
  25. Waller, A. et al. Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Trends Pharmacol. Sci. 25, 663–669 (2004).
    Article CAS Google Scholar
  26. Albert, P.R. & Robillard, L. G protein specificity: traffic direction required. Cell. Signal. 14, 407–418 (2002).
    Article CAS Google Scholar
  27. Yi, T.M., Kitano, H. & Simon, M.I. A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc. Natl. Acad. Sci. USA 100, 10764–10769 (2003).
    Article CAS Google Scholar
  28. Azzi, M. et al. Allosteric effects of G protein overexpression on the binding of beta-adrenergic ligands with distinct inverse efficacies. Mol. Pharmacol. 60, 999–1007 (2001).
    Article CAS Google Scholar

Download references