Oligomerization of G-protein-coupled transmitter receptors (original) (raw)
Suryanarayana, S., Von Zastrow, M. & Kobilka, B. K. Identification of intramolecular interactions in adrenergic receptors. J. Biol. Chem.267, 21991–21994 (1992). CASPubMed Google Scholar
Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J.18, 1723–1729 (1999). CASPubMedPubMed Central Google Scholar
Crespo, P., Cachero, T. G., Xu, N. & Gutkind, J. S. Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. J. Biol. Chem.270, 25259–25265 (1995). CASPubMed Google Scholar
Bogoyevitch, M. A. et al. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochem. J.314, 115–121 (1996). CASPubMedPubMed Central Google Scholar
Yamamoto, J., Nagao, M., Kaziro, Y. & Itoh, H. Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gi and Gq/11 subunits. J. Biol. Chem.272, 27771–27777 (1997). Google Scholar
Williams, N. G., Zhong, H. & Minneman, K. P. Differential coupling of α1-, α2-, and β-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J. Biol. Chem.273, 24624–24632 (1998). CASPubMed Google Scholar
Gerhardt, C. C., Gros, J., Strosberg, A. D. & Issad, T. Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human β-3 adrenergic receptor: new pharmacological profile and mechanism of activation . Mol. Pharmacol.55, 255– 262 (1999). CASPubMed Google Scholar
Soeder, K. J. et al. The β-3 adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem.274, 12017–12022 (1999). CASPubMed Google Scholar
van Biesen, T. et al. Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature376, 781–784 (1995). CASPubMed Google Scholar
Zou, Y. et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J. Biol. Chem.274, 9760–9770 ( 1999). CASPubMed Google Scholar
Luttrell, L. M., Della, R. G., van Biesen, T., Luttrell, D. K. & Lefkowitz, R. J. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem.272, 4637–4644 ( 1997). CASPubMed Google Scholar
Luttrell, L. et al. Beta-arrestin-dependent formation of β-2-adrenergic receptor-Src protein kinase complexes. Science283, 655 –661 (1999). CASPubMed Google Scholar
Hall, R. A. et al. The β-2 adrenergic receptor interacts with the Na/H-exchanger regulatory factor to control NA/H exchange. Nature329, 626–630 (1998). Google Scholar
Mellado, M. et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol.161, 805–813 (1998). CASPubMed Google Scholar
Ali, M. S. et al. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J. Biol. Chem.272, 23382– 23388 (1997). CASPubMed Google Scholar
Wreggett, K. A. & Wells, J. W. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors . J. Biol. Chem.270, 22488– 22499 (1995). CASPubMed Google Scholar
Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell80, 213–223 ( 1995). CASPubMed Google Scholar
Limbird, L. E., Meyts, P. D. & Lefkowitz, R. J. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun.64, 1160–1168 (1975). CASPubMed Google Scholar
Potter, L. T. et al. Evidence for paired M2 muscarinic receptors. Mol. Pharmacol.39, 211–221 ( 1991). CASPubMed Google Scholar
Limbird, L. E. & Lefkowitz, R. J. Negative cooperativity among β-adrenergic receptors in frog erythrocyte membranes . J. Biol. Chem.251, 5007– 5014 (1976). CASPubMed Google Scholar
Mattera, R., Pitts, B. J., Entman, M. L. & Birnbaumer, L. Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo- and heterotropic cooperativity in ligand binding analysed by computer-assisted curve fitting. J. Biol. Chem.260, 7410–7421 (1985). CASPubMed Google Scholar
Hirschberg, B. T. & Schimerlik, M. I. A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J. Biol. Chem.269, 26127–26135 (1994). CASPubMed Google Scholar
Seeman, P. et al. The cloned dopamine D2 receptor reveals different densities for dopamine receptor antagonist ligands. Implications for human brain positron emission tomography. Eur. J. Pharmacol.227, 139–146 (1992). CASPubMed Google Scholar
Avissar, S., Amitai, G. & Sokolovsky, M. Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc. Natl Acad. Sci. USA80, 156–159 (1983). CASPubMedPubMed Central Google Scholar
Fraser, C. M. & Venter, J. C. The size of the mammalian lung β-2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography . Biochem. Biophys. Res. Commun.109, 21 –29 (1982). CASPubMed Google Scholar
Venter, J. C., Schaber, J. S., U' Prichard, D. C. & Fraser, C. M. Molecular size of the human platelet α2-adrenergic receptor as determined by radiation inactivation. Biochem. Biophys. Res. Commun.116, 1070–1075 (1983). CASPubMed Google Scholar
Venter, J. C., Horne, P., Eddy, B., Greguski, R. & Fraser, C. M. Alpha 1-adrenergic receptor structure. Mol. Pharmacol.26, 196–205 (1984). CASPubMed Google Scholar
Crine, P., Aubry, M. & Potier, M. Incorporation of radiolabeled amino acids into protein subunits of the rat leydig cell gonadotropin receptor: application to the study of receptor structure and turnover. Ann. NY Acad. Sci.438, 224–236 (1984). CASPubMed Google Scholar
Conn, P. M. & Venter, J. C. Radiation inactivation (target size analysis) of the gonadotropin-releasing hormone receptor: evidence for a high molecular weight complex. Endocrinology116, 1324–1326 (1985). CASPubMed Google Scholar
Bouvier, C. et al. Solubilization and characterization of D2-dopamine receptors in an estrone-induced, prolactin-secreting rat pituitary adenoma. J. Neurochem.47, 1653–1660 (1986). CASPubMed Google Scholar
Frame, L. T., Yeung, S. M., Venter, J. C. & Cooper, D. M. Target size of the adenosine R1 receptor. Biochem. J.235, 621–624 (1986). CASPubMedPubMed Central Google Scholar
Herberg, J. T., Codina, J., Rich, K. A., Rojas, F. J. & Iyengar, R. The hepatic glucagon receptor. Solubilization, characterization, and development of an affinity adsorption assay for the soluble receptor. J. Biol. Chem.259, 9285–9294 (1984). CASPubMed Google Scholar
Peterson, G. L., Rosenbaum, L. C., Broderick, D. J. & Schimerlick, M. I. Physical properties of the purified cardiac muscarinic acetylcholine receptor . Biochemistry25, 3189– 3202 (1986). CASPubMed Google Scholar
Maggio, R., Vogel, Z. & Wess, J. Co-expression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular 'cross-talk' between G-protein-linked receptors . Proc. Natl Acad. Sci. USA90, 3103– 3107 (1993).Using α2-adrenergic/M3 muscarinic chimeric proteins, this study documented the occurrence of intermolecular functional complementation indicating that G-protein-coupled receptors can function as dimeric entities. CASPubMedPubMed Central Google Scholar
Monnot, C. et al. Polar residues in the transmembrane domain of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J. Biol. Chem.271, 1507–1513 ( 1996). CASPubMed Google Scholar
Bai, M., Trivedi, S., Kifor, O., Quinn, S. J. & Brown, E. M. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc. Natl Acad. Sci. USA96, 2834–2839 (1999). CASPubMedPubMed Central Google Scholar
Bai, M. et al. Expression and characterization of inactivating and activating mutations in the human Ca2+-sensing receptor. J. Biol. Chem.271, 19537–19545 (1996). CASPubMed Google Scholar
Zhu, X. & Wess, J. Truncated V2 vasopressin receptors as negative regulators of wild-type V2 receptor function. Biochemistry37, 15773–15784 ( 1998). CASPubMed Google Scholar
Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A. & Jeang, K. T. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J. Biol. Chem.272, 30603–30606 (1997). CASPubMed Google Scholar
Rodriguez-Frade, J. M. et al. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA96, 3628–3633 (1999). CASPubMedPubMed Central Google Scholar
Overton, M. C. & Blumer, K. J. G Protein coupled receptors function as oligomers in vivo. Curr. Biol.10, 341–344 (2000). Using non-disruptive bioluminescence and fluorescence resonance energy transfer approaches, this paper and references54and57all demonstrated simultaneously and independently that G-protein-coupled receptors form dimers in living cells. CASPubMed Google Scholar
Hebert, T. E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem.271, 16384–16392 ( 1996).Using differential epitope tagging and co-immunoprecipitation, this study provided direct biochemical evidence that wild-type G-protein-coupled receptors exist and might function as dimers. CASPubMed Google Scholar
White, J. H. et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature396, 679– 682 (1998). CASPubMed Google Scholar
Jones, K. A. et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature396, 674–679 (1998). CASPubMed Google Scholar
Kaupmann, K. et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature396, 683– 687 (1998).References43–45showed simultaneously and independently that not only could heterodimerization between GABABR1 and GABABR2 receptors occur, but that it is essential to the formation of a functional receptor expressed at the cell surface. CASPubMed Google Scholar
Romano, C., Yang, W. L. & O'Malley, K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem.271, 28612– 28616 (1996).Biochemical demonstration that dimerization of the metabotropic glutamate receptor involves the formation of disulphide bridges between their large extracellular amino-terminal domains. CASPubMed Google Scholar
Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature399, 697–700 (1999).A combination of co-immunoprecipitation and pharmacological analysis of coexpressed δ- and κ-opioid receptors suggested for the first time that dimerization between distinct receptor subtypes could lead to the formation of a receptor with unique pharmacological properties. CASPubMedPubMed Central Google Scholar
Bai, M., Trivedi, S. & Brown, E. M. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J. Biol. Chem.273, 23605–23610 (1998). CASPubMed Google Scholar
Zeng, F. Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem.274 , 19487–19497 (1999). CASPubMed Google Scholar
Furthmayr, H. & Marchesi, V. T. Subunit structure of human erythrocyte glycophorin A. Biochemistry15, 1137– 1144 (1976). CASPubMed Google Scholar
Cvejic, S. & Devi, L. A. Dimerization of the δ-opioid receptor: implication for a role in receptor internalization. J. Biol. Chem.272, 26959–26964 (1997). CASPubMed Google Scholar
Ciruela, F. et al. Immunological identification of A1 adenosine receptors in brain cortex. J. Neurosci. Res.42, 818– 828 (1995). CASPubMed Google Scholar
Ng, G. Y. et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys. Res. Commun.227, 200– 204 (1996). CASPubMed Google Scholar
Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA97, 3684– 3689 (2000). CASPubMedPubMed Central Google Scholar
McVey, M. et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: The human δ-opioid receptor displays constitutive oligomerization at the cell surface which is not regulated by receptor occupancy. J. Biol. Chem. (in the press).
Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E. C. & Eidne, K. A. Constitutive and agonist-dependent homo-oligomerizationof the thyrotropin-releasing hormone receptor; detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. (in the press).
Rocheville, M. et al. Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J. Biol. Chem.275, 7862–7869 (2000). CASPubMed Google Scholar
Roess, D. A., Horvat, R. D., Munnelly, H. & Barisas, B. G. Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology141, 4518–4523 (2000). CASPubMed Google Scholar
Bond, R. A. & Bouvier, M. Receptor-based Drug Design (ed. Leff, P.) 363–377 (Marcel Dekker, New York, 1998). Google Scholar
Ng, G. Y. et al. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem.274, 7607–7610 ( 1999). CASPubMed Google Scholar
Kuner, R. et al. Role of heteromer formation in GABAB receptor function . Science283, 74–77 (1999). CASPubMed Google Scholar
Couve, A. et al. Intracellular retention of recombinant GABAB receptors . J. Biol. Chem.273, 26361– 26367 (1998). CASPubMed Google Scholar
Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization . Neuron27, 97–106 (2000).Identification of an endoplasmic retention signal within the carboxyl tail of the GABABR1 that is masked by heterodimerization with GABABR2. In addition to highlighting the importance of dimerization for the transport of G-protein-coupled receptors, this paper also shows that GABABreceptor heterodimerization is required for function once it has reached the cell surface. CASPubMed Google Scholar
Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest.105, 887–895 ( 2000). CASPubMedPubMed Central Google Scholar
Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381, 661– 666 (1996). CASPubMed Google Scholar
Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature382, 722–725 (1996). CASPubMed Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). CASPubMed Google Scholar
Karpa, K. D., Lin, R., Kabbani, N. & Levenson, R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol.58, 677–683 ( 2000). CASPubMed Google Scholar
Nimchinsky, E. A., Hof, P. R., Janssen, W. G. M., Morrison, J. H. & Schmauss, C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem.272, 29229–29237 ( 1997). CASPubMed Google Scholar
George, S. R. et al. A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J. Biol. Chem.273, 30244–30248 (1998). CASPubMed Google Scholar
Mijares, A., Lebesgue, D., Wallukat, G. & Hoebeke, J. From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β2-adrenoceptor antibody behave as antagonists. Mol. Pharmacol.58, 373–379 (2000). CASPubMed Google Scholar
Conn, P. M., Rogers, D. C., Stewart, J. M., Niedel, J. & Sheffield, T. Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature296, 653–655 (1982). CASPubMed Google Scholar
Hazum, E. & Keinan, D. Gonadotropin releasing hormone activation is mediated by dimerization of occupied receptors. Biochem. Biophys. Res. Commun.133, 449–456 (1985). CASPubMed Google Scholar
Gregory, H., Taylor, C. L. & Hopkins, C. R. Luteinizing hormone release from dissociated pituitary cells by dimerization of occupied LHRH receptors. Nature300, 269–271 (1982). CASPubMed Google Scholar
Carrithers, M. D. & Lerner, M. R. Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors. Chem. Biol.3, 537– 542 (1996). CASPubMed Google Scholar
Vila-Coro, A. J. et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl Acad. Sci. USA97, 3388–3393 (2000). CASPubMedPubMed Central Google Scholar
Zukin, R. S., Eghbali, M., Olive, D., Unterwald, E. M. & Tempel, A. Characterization and visualization of rat and guinea pig brain κ-opioid receptors: evidence for κ1 and κ2 opioid receptors. Proc. Natl Acad. Sci. USA85, 4061–4065 (1988). CASPubMedPubMed Central Google Scholar
AbdAlla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature407, 94–98 (2000). CASPubMed Google Scholar
Gines, S. et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl Acad. Sci. USA97 , 8606–8611 (2000). CASPubMedPubMed Central Google Scholar
George, S. R. et al. Oligomerization of μ- and δ-opioid receptors. Generation of novel functional properties. J. Biol. Chem.275, 26128–26135 (2000). CASPubMed Google Scholar
Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science288, 154–157 (2000). CASPubMed Google Scholar
Jordan, B. A., Trapaidze, N., Gomes, I., Nivarthi, R. & Devi, L. A. Oligomerization of opioid receptors with β2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation . Proc. Natl Acad. Sci. USA98, 343– 348 (2001). CASPubMed Google Scholar
Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature399, 697–700 (1999). CASPubMedPubMed Central Google Scholar
Zeng, F. Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem.274 , 19487–19497 (1999). CASPubMed Google Scholar
Cornea, A., Janovick, J. A., Maya-Nunez, G. & Conn, P. M. Gonadotropin releasing hormone microaggregation: rate monitored by fluorescence resonance energy transfer. J. Biol. Chem. (in the press).
Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature407, 971– 977 (2000).The resolution of the three-dimensional structure of the ligand-binding domain of the metabotropic glutamate receptor revealed that it is a dimer both in the presence and absence of glutamate, indicating that G-protein-coupled receptors might be constitutive dimers. CASPubMed Google Scholar
Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem.275, 28144–28151 ( 2000). CASPubMed Google Scholar
Ray, K. & Hauschild, B. C. Cys-140 is critical for metabotropic glutamate receptor-1 dimerization. J. Biol. Chem.275 , 34245–34251 (2000). CASPubMed Google Scholar
Romano, C. et al. Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu(5) dimerization. Mol. Pharmacol.59, 46–53 (2001). CASPubMed Google Scholar
Zhang, Z., Sun, S., Quinn, S. J., Brown, E. M. & Bai, M. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J. Biol. Chem. (2000).
Lemmon, M. A. et al. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J. Biol. Chem.267, 7683–7689 (1992). CASPubMed Google Scholar
Lemmon, M. A. & Engelman, D. M. Specificity and promiscuity in membrane helix interactions. FEBS Lett.346, 17–20 (1994). CASPubMed Google Scholar
Gouldson, P. R. et al. Dimerization and domain swapping in G-protein-coupled receptors. A computational study. Neuropsychopharmacology23, S60–S77 (2000). CASPubMed Google Scholar
Ng, G. Y. et al. Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol. Pharmacol.59 , 144–152 (2001). This paper describes the formation of heterodimers between GABABR2 and different splice variants of the GABABR1, leading to receptors with different pharmacological selectivity to the action of anticonvulsant drugs. CASPubMed Google Scholar
Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA96, 151–156 (1999). CASPubMedPubMed Central Google Scholar
Hovius, R., Vallotton, P., Wohland, T. & Vogel, H. Fluorescence techniques: shedding light on ligand-receptor interactions. Trends Pharmacol. Sci.21, 266–273 (2000). CASPubMed Google Scholar
Njuki, F. et al. A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin. Sci.85, 385– 388 (1993). CAS Google Scholar
Fluhmann, B., Muff, R., Hunziker, W., Fischer, J. A. & Born, W. A human orphan calcitonin receptor-like structure. Biochem. Biophys. Res. Commun.206, 341– 347 (1995). CASPubMed Google Scholar
McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature393, 333–339 (1998).The first demonstration that heterodimerization between a G-protein-coupled receptor (the calcitonin receptor-like receptor) and accessory proteins known as the receptor-activity-modifying proteins (RAMPs) is involved both in the cell-surface transport and the pharmacological properties of the resulting calcitonin-gene-related peptide and adrenomedullin receptors. CASPubMed Google Scholar
Christopoulos, G. et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol.56, 235–242 (1999). CASPubMed Google Scholar
Dwyer, N. D., Troemel, E. R., Sengupta, P. & Bargmann, C. I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell93, 455 –466 (1998). CASPubMed Google Scholar
Liu, F. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature403, 274–280 (2000). This paper reports a physical association between a seven-transmembrane-domain dopamine receptor and a channel GABAAreceptor, which leads to reciprocal regulation of the two classes of receptors on co-activation. CASPubMed Google Scholar
Bergson, C. et al. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci.15, 7821–7836 ( 1995). CASPubMedPubMed Central Google Scholar