LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB (original) (raw)
Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol.13, 722–737 (2013). ArticleCAS Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCAS Google Scholar
Heath, R. J. et al. RNF166 determines recruitment of adaptor proteins during antibacterial autophagy. Cell Rep.17, 2183–2194 (2016). ArticleCAS Google Scholar
Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature501, 512–516 (2013). ArticleCAS Google Scholar
Franco, L. H. et al. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe21, 59–72 (2017). ArticleCAS Google Scholar
Perrin, A., Jiang, X., Birmingham, C., So, N. & Brumell, J. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol.14, 806–811 (2004). ArticleCAS Google Scholar
Thurston, T. L. M., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature482, 414–418 (2012). ArticleCAS Google Scholar
Thurston, T. L. M., Ryzhakov, G., Bloor, S., Muhlinen von, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol.10, 1215–1221 (2009). ArticleCAS Google Scholar
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science333, 228–233 (2011). ArticleCAS Google Scholar
Boyle, K. B. & Randow, F. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol.16, 339–348 (2013). ArticleCAS Google Scholar
Cemma, M., Kim, P. K. & Brumell, J. H. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy7, 341–345 (2011). ArticleCAS Google Scholar
Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J.25, 4877–4887 (2006). ArticleCAS Google Scholar
Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature471, 637–641 (2011). ArticleCAS Google Scholar
Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature471, 633–636 (2011). ArticleCAS Google Scholar
Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature471, 591–596 (2011). ArticleCAS Google Scholar
Fiskin, E., Bionda, T., Dikic, I. & Behrends, C. Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection. Mol. Cell62, 967–981 (2016). ArticleCAS Google Scholar
Collins, C. A. et al. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathogens5, e1000430 (2009). Article Google Scholar
Fujita, N. et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol.203, 115–128 (2013). Article Google Scholar
Fujita, H. et al. Mechanism underlying I B kinase activation mediated by the linear ubiquitin chain assembly complex. Mol. Cell Biol.34, 1322–1335 (2014). Article Google Scholar
Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature503, 422–426 (2013). ArticleCAS Google Scholar
Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell36, 831–844 (2009). ArticleCAS Google Scholar
Sato, Y. et al. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc. Natl Acad. Sci. USA108, 20520–20525 (2011). ArticleCAS Google Scholar
Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res.26, 399–422 (2016). ArticleCAS Google Scholar
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell136, 1098–1109 (2009). ArticleCAS Google Scholar
Bloor, S. et al. Signal processing by its coil zipper domain activates IKK gamma. Proc. Natl Acad. Sci. USA105, 1279–1284 (2008). ArticleCAS Google Scholar
Kageyama, S. et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell22, 2290–2300 (2011). ArticleCAS Google Scholar
Muhlinen von, N. et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell48, 329–342 (2012). Article Google Scholar
Li, S. et al. Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal.6, ra9 (2013). Article Google Scholar
Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem.283, 22847–22857 (2008). ArticleCAS Google Scholar
de Jong, M. F., Liu, Z., Chen, D. & Alto, N. M. Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat. Microbiol.1, 16084 (2016). ArticleCAS Google Scholar
Caruso, R., Warner, N., Inohara, N. & Núñez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity41, 898–908 (2014). ArticleCAS Google Scholar
Huett, A. et al. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium. Cell Host Microbe12, 778–790 (2012). ArticleCAS Google Scholar
van Wijk, S. J. L. et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell47, 797–809 (2012). ArticleCAS Google Scholar
Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe15, 403–411 (2014). ArticleCAS Google Scholar
Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol.32, 461–488 (2014). ArticleCAS Google Scholar
Randow, F. & Sale, J. E. Retroviral transduction of DT40. Subcell. Biochem.40, 383–386 (2006). Article Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004). ArticleCAS Google Scholar
Michel, M. A. et al. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol. Cell58, 95–109 (2015). ArticleCAS Google Scholar