Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex (original) (raw)

References

  1. Llinas, R.R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988).
    Article CAS Google Scholar
  2. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
    Article CAS Google Scholar
  3. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).
    Article CAS Google Scholar
  4. Leopold, D.A., Murayama, Y. & Logothetis, N.K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 422–433 (2003).
    Article Google Scholar
  5. Laufs, H. et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 100, 11053–11058 (2003).
    Article CAS Google Scholar
  6. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).
    Article CAS Google Scholar
  7. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L. & Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 104, 13170–13175 (2007).
    Article CAS Google Scholar
  8. Steriade, M., Nunez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).
    Article CAS Google Scholar
  9. Steriade, M., Amzica, F. & Nunez, A. Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400 (1993).
    Article CAS Google Scholar
  10. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).
    Article CAS Google Scholar
  11. Kanwisher, N. Neural events and perceptual awareness. Cognition 79, 89–113 (2001).
    Article CAS Google Scholar
  12. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).
    Article CAS Google Scholar
  13. Lowe, M.J., Mock, B.J. & Sorenson, J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7, 119–132 (1998).
    Article CAS Google Scholar
  14. Cordes, D. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21, 1636–1644 (2000).
    CAS PubMed Google Scholar
  15. Greicius, M.D., Krasnow, B., Reiss, A.L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258 (2003).
    Article CAS Google Scholar
  16. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).
    Article CAS Google Scholar
  17. Damoiseaux, J.S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848–13853 (2006).
    Article CAS Google Scholar
  18. Nir, Y., Hasson, U., Levy, I., Yeshurun, Y. & Malach, R. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30, 1313–1324 (2006).
    Article Google Scholar
  19. Vincent, J.L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).
    Article CAS Google Scholar
  20. Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).
    Article Google Scholar
  21. Fox, M.D. & Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).
    Article CAS Google Scholar
  22. Bitterman, Y., Mukamel, R., Malach, R., Fried, I. & Nelken, I. Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197–201 (2008).
    Article CAS Google Scholar
  23. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).
    Article CAS Google Scholar
  24. Privman, E. et al. Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J. Neurosci. 27, 6234–6242 (2007).
    Article CAS Google Scholar
  25. Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).
    Article CAS Google Scholar
  26. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).
    Article CAS Google Scholar
  27. Womelsdorf, T., Fries, P., Mitra, P.P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).
    Article CAS Google Scholar
  28. Lu, H. et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl. Acad. Sci. USA 104, 18265–18269 (2007).
    Article CAS Google Scholar
  29. Mukamel, R. et al. Coupling between neuronal firing, field potentials and FMRI in human auditory cortex. Science 309, 951–954 (2005).
    Article CAS Google Scholar
  30. Nelken, I. Processing of complex stimuli and natural scenes in the auditory cortex. Curr. Opin. Neurobiol. 14, 474–480 (2004).
    Article CAS Google Scholar
  31. Mitra, P.P., Ogawa, S., Hu, X. & Ugurbil, K. The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging. Magn. Reson. Med. 37, 511–518 (1997).
    Article CAS Google Scholar
  32. Greicius, M.D., Srivastava, G., Reiss, A.L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642 (2004).
    Article CAS Google Scholar
  33. Liu, H. et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17, 19–22 (2006).
    Article CAS Google Scholar
  34. Cordes, D., Haughton, V., Carew, J.D., Arfanakis, K. & Maravilla, K. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20, 305–317 (2002).
    Article Google Scholar
  35. Golland, Y., Golland, P., Bentin, S. & Malach, R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia 46, 540–553 (2008).
    Article Google Scholar
  36. Van de Ven, V.G., Formisano, E., Prvulovic, D., Roeder, C.H. & Linden, D.E. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain Mapp. 22, 165–178 (2004).
    Article Google Scholar
  37. Johnston, J.M. et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J. Neurosci. 28, 6453–6458 (2008).
    Article CAS Google Scholar
  38. Niessing, J. et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005).
    Article CAS Google Scholar
  39. Nir, Y., Dinstein, I., Malach, R. & Heeger, D.J. BOLD and spiking activity. Nat. Neurosci. 11, 523–524 (2008).
    Article CAS Google Scholar
  40. Shmuel, A. & Leopold, D.A. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Hum. Brain Mapp. 29, 751–761 (2008).
    Article Google Scholar
  41. Barbour, D.L. & Wang, X. Auditory cortical responses elicited in awake primates by random spectrum stimuli. J. Neurosci. 23, 7194–7206 (2003).
    Article Google Scholar
  42. Phan, M.L. & Recanzone, G.H. Single-neuron responses to rapidly presented temporal sequences in the primary auditory cortex of the awake macaque monkey. J. Neurophysiol. 97, 1726–1737 (2007).
    Article CAS Google Scholar
  43. Tootell, R.B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).
    Article CAS Google Scholar
  44. Fishbein, I. & Segal, M. Miniature synaptic currents become neurotoxic to chronically silenced neurons. Cereb. Cortex 17, 1292–1306 (2007).
    Article Google Scholar
  45. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006).
    Article Google Scholar
  46. Morel, A., Garraghty, P.E. & Kaas, J.H. Tonotopic organization, architectonic fields and connections of auditory cortex in macaque monkeys. J. Comp. Neurol. 335, 437–459 (1993).
    Article CAS Google Scholar
  47. Tsodyks, M.V. & Sejnowski, T. Rapid state switching in balanced cortical network models. Network Comput. Neural Syst. 6, 111–124 (1995).
    Article Google Scholar
  48. Vogels, T.P., Rajan, K. & Abbott, L.F. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).
    Article CAS Google Scholar
  49. Laureys, S. & Boly, M. What is it like to be vegetative or minimally conscious? Curr. Opin. Neurol. 20, 609–613 (2007).
    Article Google Scholar
  50. Rechtschaffen, A. & Kales, A.A. A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects (US Department of Health, Education and Welfare, Bethesda, Maryland, 1968).
    Google Scholar

Download references