Plasticity in gray and white: neuroimaging changes in brain structure during learning (original) (raw)
He, Y., Chen, Z.J. & Evans, A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex17, 2407–2419 (2007). PubMed Google Scholar
Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron72, 873–884 (2011). CASPubMedPubMed Central Google Scholar
Bermudez, P., Evans, A.C., Lerch, J.P. & Zatorre, R.J. Neuro-anatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex19, 1583–1596 (2009). PubMed Google Scholar
Maguire, E.A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA97, 4398–4403 (2000). CASPubMedPubMed Central Google Scholar
Schneider, P. et al. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci.5, 688–694 (2002). CASPubMed Google Scholar
Bengtsson, S.L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci.8, 1148–1150 (2005). CASPubMed Google Scholar
Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature427, 311–312 (2004). CASPubMed Google Scholar
Driemeyer, J., Boyke, J., Gaser, C., Buchel, C. & May, A. Changes in gray matter induced by learning–revisited. PLoS ONE3, e2669 (2008). PubMedPubMed Central Google Scholar
Scholz, J., Klein, M.C., Behrens, T.E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci.12, 1370–1371 (2009). CASPubMedPubMed Central Google Scholar
Taubert, M. et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci.30, 11670–11677 (2010). CASPubMedPubMed Central Google Scholar
Takeuchi, H. et al. Training of working memory impacts structural connectivity. J. Neurosci.30, 3297–3303 (2010). CASPubMedPubMed Central Google Scholar
Thompson, P.M. et al. Genetic influences on brain structure. Nat. Neurosci.4, 1253–1258 (2001). CASPubMed Google Scholar
Chiang, M.C. et al. Genetics of brain fiber architecture and intellectual performance. J. Neurosci.29, 2212–2224 (2009). CASPubMedPubMed Central Google Scholar
Golestani, N., Molko, N., Dehaene, S., LeBihan, D. & Pallier, C. Brain structure predicts the learning of foreign speech sounds. Cereb. Cortex17, 575–582 (2007). PubMed Google Scholar
Wong, P.C. et al. Volume of left Heschl's gyrus and linguistic pitch learning. Cereb. Cortex18, 828–836 (2008). PubMed Google Scholar
Foster, N.E. & Zatorre, R.J. Cortical structure predicts success in performing musical transformation judgments. Neuroimage53, 26–36 (2010). PubMed Google Scholar
Laule, C. et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler.12, 747–753 (2006). CASPubMed Google Scholar
Beaulieu, C. The biological basis of diffusion anisotropy. in Diffusion MRI: From Quantitative Measurement to In-Vivo Neuroanatomy (eds. Johansen-Berg, H. & Behrens, T.E.J.) 105–126 (Elsevier, London, 2009).
Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G. & Weisskoff, R.M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med.54, 1377–1386 (2005). PubMed Google Scholar
Lerch, J.P. et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage54, 2086–2095 (2011). PubMed Google Scholar
Barbier, E.L., Lamalle, L. & Decorps, M. Methodology of brain perfusion imaging. J. Magn. Reson. Imaging13, 496–520 (2001). CASPubMed Google Scholar
Tronel, S. et al. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc. Natl. Acad. Sci. USA107, 7963–7968 (2010). CASPubMedPubMed Central Google Scholar
Deng, W., Saxe, M.D., Gallina, I.S. & Gage, F.H. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci.29, 13532–13542 (2009). CASPubMedPubMed Central Google Scholar
Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature472, 466–470 (2011). CASPubMedPubMed Central Google Scholar
Aimone, J.B., Wiles, J. & Gage, F.H. Computational influence of adult neurogenesis on memory encoding. Neuron61, 187–202 (2009). CASPubMedPubMed Central Google Scholar
Gould, E., Reeves, A.J., Graziano, M.S. & Gross, C.G. Neurogenesis in the neocortex of adult primates. Science286, 548–552 (1999). CASPubMed Google Scholar
Iordanova, B. & Ahrens, E.T. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. Neuroimage59, 1004–1012 (2011). PubMed Google Scholar
Nieman, B.J. et al. In vivo MRI of neural cell migration dynamics in the mouse brain. Neuroimage50, 456–464 (2010). PubMed Google Scholar
Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci.3, 65–71 (2002). CASPubMed Google Scholar
Dong, W.K. & Greenough, W.T. Plasticity of nonneuronal brain tissue: roles in developmental disorders. Ment. Retard. Dev. Disabil. Res. Rev.10, 85–90 (2004). PubMed Google Scholar
Wang, X., Takano, T. & Nedergaard, M. Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods Mol. Biol.489, 93–109 (2009). CASPubMedPubMed Central Google Scholar
Tremblay, M.È., Lowery, R.L. & Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol.8, e1000527 (2010). PubMedPubMed Central Google Scholar
Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci.29, 3974–3980 (2009). CASPubMedPubMed Central Google Scholar
Kleim, J.A. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem.77, 63–77 (2002). PubMed Google Scholar
Kolb, B., Cioe, J. & Comeau, W. Contrasting effects of motor and visual spatial learning tasks on dendritic arborization and spine density in rats. Neurobiol. Learn. Mem.90, 295–300 (2008). PubMed Google Scholar
Kleim, J.A. et al. Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav. Brain Res.178, 244–249 (2007). PubMedPubMed Central Google Scholar
Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature462, 920–924 (2009). CASPubMedPubMed Central Google Scholar
Draganski, B. et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci.26, 6314–6317 (2006). CASPubMedPubMed Central Google Scholar
Rhyu, I.J. et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience167, 1239–1248 (2010). CASPubMed Google Scholar
Pereira, A.C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA104, 5638–5643 (2007). CASPubMedPubMed Central Google Scholar
Klintsova, A.Y., Dickson, E., Yoshida, R. & Greenough, W.T. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res.1028, 92–104 (2004). CASPubMed Google Scholar
Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci.24, 10099–10102 (2004). CASPubMedPubMed Central Google Scholar
Egan, M.F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell112, 257–269 (2003). CASPubMed Google Scholar
Cheeran, B. et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. (Lond.)586, 5717–5725 (2008). CAS Google Scholar
Xiao, J. et al. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals18, 186–202 (2010). CASPubMed Google Scholar
Cohen, J.E. & Fields, R.D. Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biol.4, 43–55 (2008). PubMedPubMed Central Google Scholar
Datwani, A. et al. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron64, 463–470 (2009). CASPubMedPubMed Central Google Scholar
Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell131, 1164–1178 (2007). CASPubMed Google Scholar
Licht, T. et al. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl. Acad. Sci. USA108, 5081–5086 (2011). CASPubMedPubMed Central Google Scholar
Concha, L., Livy, D.J., Beaulieu, C., Wheatley, B.M. & Gross, D.W. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J. Neurosci.30, 996–1002 (2010). CASPubMedPubMed Central Google Scholar
Takahashi, M. et al. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc. Natl. Acad. Sci. USA99, 16192–16196 (2002). CASPubMedPubMed Central Google Scholar
Psachoulia, K., Jamen, F., Young, K.M. & Richardson, W.D. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol.5, 57–67 (2009). PubMedPubMed Central Google Scholar
Peters, A., Verderosa, A. & Sethares, C. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia56, 1151–1161 (2008). PubMed Google Scholar
Ruegg, D.G., Kakebeeke, T.H., Gabriel, J.P. & Bennefeld, M. Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin. Neurophysiol.114, 86–93 (2003). PubMed Google Scholar
Canu, M.H., Carnaud, M., Picquet, F. & Goutebroze, L. Activity-dependent regulation of myelin maintenance in the adult rat. Brain Res.1252, 45–51 (2009). CASPubMed Google Scholar
Markham, J.A., Herting, M.M., Luszpak, A.E., Juraska, J.M. & Greenough, W.T. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res.1288, 9–17 (2009). CASPubMedPubMed Central Google Scholar
Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE6, e20678 (2011). CASPubMedPubMed Central Google Scholar
Adams, B., Lee, M., Fahnestock, M. & Racine, R.J. Long-term potentiation trains induce mossy fiber sprouting. Brain Res.775, 193–197 (1997). CASPubMed Google Scholar
Ramírez-Amaya, V., Escobar, M.L., Chao, V. & Bermudez-Rattoni, F. Synaptogenesis of mossy fibers induced by spatial water maze overtraining. Hippocampus9, 631–636 (1999). PubMed Google Scholar
Toscano-Silva, M. et al. Hippocampal mossy fiber sprouting induced by forced and voluntary physical exercise. Physiol. Behav.101, 302–308 (2010). CASPubMed Google Scholar
Yasuda, M. et al. Multiple forms of activity-dependent competition refine hippocampal circuits in vivo. Neuron70, 1128–1142 (2011). CASPubMedPubMed Central Google Scholar
Johansen-Berg, H. Structural plasticity: rewiring the brain. Curr. Biol.17, R141–R144 (2007). CASPubMed Google Scholar
Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci.10, 311–320 (2007). CASPubMed Google Scholar
Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci.10, 321–330 (2007). CASPubMedPubMed Central Google Scholar
Fields, R.D. & Ni, Y. Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal.3, ra73 (2010). PubMedPubMed Central Google Scholar
Stevens, B. & Fields, R.D. Response of Schwann cells to action potentials in development. Science287, 2267–2271 (2000). CASPubMed Google Scholar
Stevens, B., Porta, S., Haak, L.L., Gallo, V. & Fields, R.D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron36, 855–868 (2002). CASPubMedPubMed Central Google Scholar
Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron49, 823–832 (2006). CASPubMedPubMed Central Google Scholar
Taveggia, C., Feltri, M.L. & Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol.6, 276–287 (2010). PubMedPubMed Central Google Scholar
Nave, K.A. Myelination and support of axonal integrity by glia. Nature468, 244–252 (2010). CASPubMed Google Scholar
Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science330, 779–782 (2010). CASPubMed Google Scholar
Back, S.A., Luo, N.L., Borenstein, N.S., Volpe, J.J. & Kinney, H.C. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J. Neuropathol. Exp. Neurol.61, 197–211 (2002). PubMed Google Scholar
Itoh, K., Stevens, B., Schachner, M. & Fields, R.D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science270, 1369–1372 (1995). CASPubMed Google Scholar
Wake, H., Lee, P.R. & Fields, R.D. Control of local protein synthesis and initial events in myelination by action potentials. Science333, 1647–1651 (2011). CASPubMedPubMed Central Google Scholar
Dutta, R. & Trapp, B.D. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology68, S22–S31; discussion S43–S54 (2007). PubMed Google Scholar
Petrinovic, M.M. et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development137, 2539–2550 (2010). CASPubMed Google Scholar
Lee, H. et al. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci.28, 2753–2765 (2008). CASPubMedPubMed Central Google Scholar
Kang, X., Herron, T.J. & Woods, D.L. Regional variation, hemispheric asymmetries and gender differences in pericortical white matter. Neuroimage56, 2011–2023 (2011). PubMed Google Scholar
Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann. Neurol.69, 673–680 (2011). CASPubMed Google Scholar
Duyn, J.H. et al. High-field MRI of brain cortical substructure based on signal phase. Proc. Natl. Acad. Sci. USA104, 11796–11801 (2007). CASPubMedPubMed Central Google Scholar
Van Leemput, K. et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus19, 549–557 (2009). PubMedPubMed Central Google Scholar
Barazany, D., Basser, P.J. & Assaf, Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain132, 1210–1220 (2009). PubMedPubMed Central Google Scholar
Avram, A.V., Guidon, A. & Song, A.W. Myelin water weighted diffusion tensor imaging. Neuroimage53, 132–138 (2010). PubMed Google Scholar
Johansen-Berg, H., Della-Maggiore, V., Behrens, T.E., Smith, S.M. & Paus, T. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage36 (suppl. 2), T16–T21 (2007). PubMed Google Scholar
Flöel, A., de Vries, M.H., Scholz, J., Breitenstein, C. & Johansen-Berg, H. White matter integrity in the vicinity of Broca's area predicts grammar learning success. Neuroimage47, 1974–1981 (2009). PubMed Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Buchel, C. & May, A. Training-induced brain structure changes in the elderly. J. Neurosci.28, 7031–7035 (2008). CASPubMedPubMed Central Google Scholar
Wright, I.C. et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage2, 244–252 (1995). CASPubMed Google Scholar
Johansen-Berg, H. & Behrens, T.E.J. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy (Elsevier, London, 2009).
Horsfield, M.A. Magnetization transfer imaging in multiple sclerosis. J. Neuroimaging15, 58S–67S (2005). PubMed Google Scholar
Ashburner, J. et al. Identifying global anatomical differences: deformation-based morphometry. Hum. Brain Mapp.6, 348–357 (1998). CASPubMedPubMed Central Google Scholar
Lohmann, G., von Cramon, D.Y. & Steinmetz, H. Sulcal variability of twins. Cereb. Cortex9, 754–763 (1999). CASPubMed Google Scholar
Thomas, A.G. et al. Functional but not structural changes associated with learning: an exploration of longitudinal voxel-based morphometry (VBM). Neuroimage48, 117–125 (2009). PubMed Google Scholar
Johansen-Berg, H. Behavioural relevance of variation in white matter microstructure. Curr. Opin. Neurol.23, 351–358 (2010). PubMed Google Scholar
Maguire, E.A. et al. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus13, 250–259 (2003). PubMed Google Scholar
Bohbot, V.D., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A.P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci.27, 10078–10083 (2007). CASPubMedPubMed Central Google Scholar