VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission (original) (raw)

References

  1. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).
    Article Google Scholar
  2. Jahn, R., Lang, T. & Südhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).
    Article CAS Google Scholar
  3. Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).
    Article CAS Google Scholar
  4. Rizo, J. & Südhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).
    Article CAS Google Scholar
  5. Bronk, P. et al. Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+-independent neurotransmission. J. Neurophysiol. 98, 794–806 (2007).
    Article CAS Google Scholar
  6. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).
    Article CAS Google Scholar
  7. Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci. 5, 19–26 (2002).
    Article CAS Google Scholar
  8. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).
    Article Google Scholar
  9. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).
    Article CAS Google Scholar
  10. Bethani, I. et al. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 10, 1543–1559 (2009).
    Article CAS Google Scholar
  11. Steegmaier, M., Klumperman, J., Foletti, D.L., Yoo, J.S. & Scheller, R.H. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 10, 1957–1972 (1999).
    Article CAS Google Scholar
  12. Peden, A.A., Park, G.Y. & Scheller, R.H. The di-leucine motif of vesicle-associated membrane protein 4 is required for its localization and AP-1 binding. J. Biol. Chem. 276, 49183–49187 (2001).
    Article CAS Google Scholar
  13. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).
    Article CAS Google Scholar
  14. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).
    Article CAS Google Scholar
  15. Liu, H., Dean, C., Arthur, C.P., Dong, M. & Chapman, E.R. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J. Neurosci. 29, 7395–7403 (2009).
    Article CAS Google Scholar
  16. Daw, M.I., Tricoire, L., Erdelyi, F., Szabo, G. & McBain, C.J. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J. Neurosci. 29, 11112–11122 (2009).
    Article CAS Google Scholar
  17. Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci. 30, 1363–1376 (2010).
    Article CAS Google Scholar
  18. Deák, F., Shin, O.-H., Kavalali, E.T. & Südhof, T.C. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J. Neurosci. 26, 6668–6676 (2006).
    Article Google Scholar
  19. Maximov, A. & Südhof, T.C. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48, 547–554 (2005).
    Article CAS Google Scholar
  20. Chung, C., Deák, F. & Kavalali, E.T. Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses. J. Neurophysiol. 100, 2089–2100 (2008).
    Article CAS Google Scholar
  21. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
    Article CAS Google Scholar
  22. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
    Article Google Scholar
  23. Sara, Y., Virmani, T., Deák, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).
    Article CAS Google Scholar
  24. Deák, F. et al. Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J. 25, 2856–2866 (2006).
    Article Google Scholar
  25. Deák, F., Schoch, S., Liu, X., Südhof, T.C. & Kavalali, E.T. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat. Cell Bio. 6, 1102–1108 (2004).
    Article Google Scholar
  26. Groffen, A.J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010).
    Article CAS Google Scholar
  27. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).
    Article CAS Google Scholar
  28. Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci. 28, 10151–10166 (2008).
    Article CAS Google Scholar
  29. Xu, J., Pang, Z.P., Shin, O.H. & Südhof, T.C. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat. Neurosci. 12, 759–766 (2009).
    Article CAS Google Scholar
  30. Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433 (2004).
    Article CAS Google Scholar
  31. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).
    Article CAS Google Scholar
  32. Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J. Neurosci. 21, 462–476 (2001).
    Article CAS Google Scholar
  33. Wölfel, M., Lou, X. & Schneggenburger, R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J. Neurosc. 27, 3198–3210 (2007).
    Article Google Scholar
  34. Ramirez, D.M. & Kavalali, E.T. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr. Opin. Neurobiol. 21, 275–282 (2011).
    Article CAS Google Scholar
  35. Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).
    Article CAS Google Scholar
  36. Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71, 474–487 (2011).
    Article CAS Google Scholar
  37. Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).
    Article Google Scholar
  38. Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).
    Article CAS Google Scholar
  39. Clayton, E.L. et al. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci. 13, 845–851 (2010).
    Article CAS Google Scholar
  40. Kavalali, E.T. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J. Physiol. (Lond.) 585, 669–679 (2007).
    Article CAS Google Scholar
  41. Virmani, T., Han, W., Liu, X., Südhof, T.C. & Kavalali, E.T. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J. 22, 5347–5357 (2003).
    Article CAS Google Scholar
  42. Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).
    Article CAS Google Scholar
  43. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).
    Article CAS Google Scholar
  44. Iremonger, K.J. & Bains, J.S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27, 6684–6691 (2007).
    Article CAS Google Scholar
  45. Mutch, S.A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. 31, 1461–1470 (2011).
    Article CAS Google Scholar
  46. Mozhayeva, M.G., Sara, Y., Liu, X. & Kavalali, E.T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).
    Article CAS Google Scholar
  47. Bajohrs, M., Rickman, C., Binz, T. & Davletov, B. A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep. 5, 1090–1095 (2004).
    Article CAS Google Scholar
  48. Hu, K., Carroll, J., Rickman, C. & Davletov, B. Action of complexin on SNARE complex. J. Biol. Chem. 277, 41652–41656 (2002).
    Article CAS Google Scholar
  49. Ramirez, D.M., Andersson, S. & Russell, D.W. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507, 1676–1693 (2008).
    Article CAS Google Scholar

Download references