VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission (original) (raw)
References
Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). Article Google Scholar
Jahn, R., Lang, T. & Südhof, T.C. Membrane fusion. Cell112, 519–533 (2003). ArticleCAS Google Scholar
Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631–643 (2006). ArticleCAS Google Scholar
Rizo, J. & Südhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci.3, 641–653 (2002). ArticleCAS Google Scholar
Bronk, P. et al. Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+-independent neurotransmission. J. Neurophysiol.98, 794–806 (2007). ArticleCAS Google Scholar
Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science294, 1117–1122 (2001). ArticleCAS Google Scholar
Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci.5, 19–26 (2002). ArticleCAS Google Scholar
Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science323, 474–477 (2009). Article Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). ArticleCAS Google Scholar
Bethani, I. et al. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic10, 1543–1559 (2009). ArticleCAS Google Scholar
Steegmaier, M., Klumperman, J., Foletti, D.L., Yoo, J.S. & Scheller, R.H. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol. Biol. Cell10, 1957–1972 (1999). ArticleCAS Google Scholar
Peden, A.A., Park, G.Y. & Scheller, R.H. The di-leucine motif of vesicle-associated membrane protein 4 is required for its localization and AP-1 binding. J. Biol. Chem.276, 49183–49187 (2001). ArticleCAS Google Scholar
Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell79, 717–727 (1994). ArticleCAS Google Scholar
Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell104, 71–81 (2001). ArticleCAS Google Scholar
Liu, H., Dean, C., Arthur, C.P., Dong, M. & Chapman, E.R. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J. Neurosci.29, 7395–7403 (2009). ArticleCAS Google Scholar
Daw, M.I., Tricoire, L., Erdelyi, F., Szabo, G. & McBain, C.J. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J. Neurosci.29, 11112–11122 (2009). ArticleCAS Google Scholar
Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci.30, 1363–1376 (2010). ArticleCAS Google Scholar
Deák, F., Shin, O.-H., Kavalali, E.T. & Südhof, T.C. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J. Neurosci.26, 6668–6676 (2006). Article Google Scholar
Maximov, A. & Südhof, T.C. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron48, 547–554 (2005). ArticleCAS Google Scholar
Chung, C., Deák, F. & Kavalali, E.T. Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses. J. Neurophysiol.100, 2089–2100 (2008). ArticleCAS Google Scholar
Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol.22, 1567–1572 (2004). ArticleCAS Google Scholar
Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). Article Google Scholar
Sara, Y., Virmani, T., Deák, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron45, 563–573 (2005). ArticleCAS Google Scholar
Deák, F. et al. Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J.25, 2856–2866 (2006). Article Google Scholar
Deák, F., Schoch, S., Liu, X., Südhof, T.C. & Kavalali, E.T. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat. Cell Bio.6, 1102–1108 (2004). Article Google Scholar
Groffen, A.J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science327, 1614–1618 (2010). ArticleCAS Google Scholar
Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature450, 676–682 (2007). ArticleCAS Google Scholar
Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci.28, 10151–10166 (2008). ArticleCAS Google Scholar
Xu, J., Pang, Z.P., Shin, O.H. & Südhof, T.C. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat. Neurosci.12, 759–766 (2009). ArticleCAS Google Scholar
Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci.24, 420–433 (2004). ArticleCAS Google Scholar
Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell99, 713–722 (1999). ArticleCAS Google Scholar
Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J. Neurosci.21, 462–476 (2001). ArticleCAS Google Scholar
Wölfel, M., Lou, X. & Schneggenburger, R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J. Neurosc.27, 3198–3210 (2007). Article Google Scholar
Ramirez, D.M. & Kavalali, E.T. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr. Opin. Neurobiol.21, 275–282 (2011). ArticleCAS Google Scholar
Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron73, 121–134 (2012). ArticleCAS Google Scholar
Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron71, 474–487 (2011). ArticleCAS Google Scholar
Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci.12, 751–758 (2009). Article Google Scholar
Clayton, E.L. et al. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci.13, 845–851 (2010). ArticleCAS Google Scholar
Kavalali, E.T. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J. Physiol. (Lond.)585, 669–679 (2007). ArticleCAS Google Scholar
Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron51, 71–84 (2006). ArticleCAS Google Scholar
Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci.8, 1319–1328 (2005). ArticleCAS Google Scholar
Iremonger, K.J. & Bains, J.S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci.27, 6684–6691 (2007). ArticleCAS Google Scholar
Mutch, S.A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci.31, 1461–1470 (2011). ArticleCAS Google Scholar
Mozhayeva, M.G., Sara, Y., Liu, X. & Kavalali, E.T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci.22, 654–665 (2002). ArticleCAS Google Scholar
Bajohrs, M., Rickman, C., Binz, T. & Davletov, B. A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep.5, 1090–1095 (2004). ArticleCAS Google Scholar
Hu, K., Carroll, J., Rickman, C. & Davletov, B. Action of complexin on SNARE complex. J. Biol. Chem.277, 41652–41656 (2002). ArticleCAS Google Scholar
Ramirez, D.M., Andersson, S. & Russell, D.W. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol.507, 1676–1693 (2008). ArticleCAS Google Scholar