The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow (original) (raw)
References
Magistretti, P.J. & Pellerin, L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci.354, 1155–1163 (1999). ArticleCASPubMedPubMed Central Google Scholar
Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab.21, 1133–1145 (2001). ArticleCASPubMed Google Scholar
Mchedlishvili, G. Arterial Behavior and Blood Circulation in the Brain (Consultants Bureau, New York, 1963).
Schaffer, C.B. et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol.4, 22 (2006). ArticleCAS Google Scholar
Blinder, P., Shih, A.Y., Rafie, C.A. & Kleinfeld, D. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl. Acad. Sci. USA107, 12670–12675 (2010). ArticlePubMedPubMed Central Google Scholar
Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level–dependent signaling. J. Neurosci.27, 4452–4459 (2007). ArticleCASPubMedPubMed Central Google Scholar
Derdikman, D., Hildesheim, R., Ahissar, E., Arieli, A. & Grinvald, A. Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J. Neurosci.23, 3100–3105 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gorelick, P.B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke42, 2672–2713 (2011). ArticlePubMedPubMed Central Google Scholar
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci.5, 347–360 (2004). ArticleCASPubMed Google Scholar
Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci.24, 8940–8949 (2004). ArticleCASPubMedPubMed Central Google Scholar
Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci.25, 621–625 (2002). ArticleCASPubMed Google Scholar
Weber, B., Keller, A.L., Reichold, J. & Logothetis, N.K. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb. Cortex18, 2318–2330 (2008). ArticlePubMed Google Scholar
Grinvald, A., Lieke, E.E., Frostig, R.D., Gilbert, C.D. & Wiesel, T.N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature324, 361–364 (1986). ArticleCASPubMed Google Scholar
Woolsey, T.A. & Van Der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res.17, 205–242 (1970). ArticleCASPubMed Google Scholar
Woolsey, T.A. et al. Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb. Cortex6, 647–660 (1996). ArticleCASPubMed Google Scholar
Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D. & Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. USA104, 365–370 (2007). ArticleCASPubMed Google Scholar
Nishimura, N., Rosidi, N.L., Iadecola, C. & Schaffer, C.B. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J. Cereb. Blood Flow Metab.30, 1914–1927 (2010). ArticlePubMedPubMed Central Google Scholar
Tsai, P.S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels. J. Neurosci.29, 14553–14570 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsai, P.S. et al. All-optical histology using ultrashort laser pulses. Neuron39, 27–41 (2003). ArticleCASPubMed Google Scholar
Shih, A.Y. et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat. Neurosci.16, 55–63 (2013). ArticleCASPubMed Google Scholar
Nguyen, J., Nishimura, N., Fetcho, R.N., Iadecola, C. & Schaffer, C.B. Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries. J. Cereb. Blood Flow Metab.31, 2243–2254 (2011). ArticlePubMedPubMed Central Google Scholar
Kim, T. & Kim, S.G. Temporal dynamics and spatial specificity of aterial and venous blood volume changes during visual stimulation: implication for BOLD quantification. J. Cereb. Blood Flow Metab.31, 1211–1222 (2011). ArticlePubMed Google Scholar
Frostig, R.D., Lieke, E.E., Ts'o, D.Y. & Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA87, 6082–6086 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kaufhold, J.P., Tsai, P.S., Blinder, P. & Kleinfeld, D. Vectorization of optically sectioned brain microvasculature: learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments. Med. Image Anal.16, 1241–1258 (2012). ArticlePubMedPubMed Central Google Scholar
Lauwers, F., Cassot, F., Lauwers-Cances, V., Puwanarajah, P. & Duvernoy, H. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Neuroimage39, 936–948 (2008). ArticlePubMed Google Scholar
Hirsch, S., Reichold, J., Schneider, M., Székely, G. & Weber, B. Topology and hemodynamics of the cortical cerebrovascular system. J. Cereb. Blood Flow Metab.32, 952–967 (2012). ArticlePubMedPubMed Central Google Scholar
Duvernoy, H.M., Delon, S. & Vannson, J.L. Cortical blood vessels of the human brain. Brain Res. Bull.7, 519–579 (1981). ArticleCASPubMed Google Scholar
Nishimura, N. et al. Targeted insult to individual subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods3, 99–108 (2006). ArticleCASPubMed Google Scholar
Shih, A.Y. et al. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J. Cereb. Blood Flow Metab.29, 738–751 (2009). ArticlePubMed Google Scholar
Cserti, J. Application of the lattice Green's function for calculating the resistance of infinite networks of resistors. Am. J. Phys.68, 896–913 (2000). Article Google Scholar
Pries, A.R., Secomb, T.W., Gaehtgens, P. & Gross, J.F. Blood flow in microvascular networks. Experiments and simulation. Circ. Res.67, 826–834 (1990). ArticleCASPubMed Google Scholar
Wu, F.Y. Theory of resistor networks: the two-point resistance. J. Phys. A Math. Gen.37, 6653 (2004). Article Google Scholar
Mayhan, W.G. & Heistad, D.D. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ. Res.59, 216–220 (1986). ArticleCASPubMed Google Scholar
Grinvald, A., Frostig, R.D., Siegel, R.M. & Bartfeld, E. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc. Natl. Acad. Sci. USA88, 11559–11563 (1991). ArticleCASPubMedPubMed Central Google Scholar
Bonhoeffer, T. & Grinvald, A. The layout of Iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization. J. Neurosci.13, 4157–4180 (1993). ArticleCASPubMedPubMed Central Google Scholar
Vazquez, A.L., Fukuda, M. & Kim, S.G. Evolution of the dynamic changes in functional cerebral oxidative metabolism from tissue mitochondria to blood oxygen. J. Cereb. Blood Flow Metab.32, 745–758 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen-Bee, C.H., Agoncillo, T., Xiong, Y. & Frostig, R.D. The triphasic intrinsic signal: implications for functional imaging. J. Neurosci.27, 4572–4586 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sirotin, Y.B., Hillman, E.M., Bordier, C. & Das, A. Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates. Proc. Natl. Acad. Sci. USA106, 18390–18395 (2009). ArticlePubMedPubMed Central Google Scholar
Eppihimer, M.J. & Lipowsky, H.H. Effects of leukocyte-capillary plugging on the resistance to flow in the microvasculature of cremaster muscle for normal and activated leukocytes. Microvasc. Res.51, 187–201 (1996). ArticleCASPubMed Google Scholar
Nakai, K. et al. Microangioarchitecture of rat parietal cortex with special reference to vascular “sphincters”: scanning electron microscopic and dark field microscopic study. Stroke12, 653–659 (1981). ArticleCASPubMed Google Scholar
Boas, D.A., Jones, S.R., Devor, A., Huppert, T.J. & Dale, A.M. A vascular anatomical network model of the spatio-temporal response to brain activation. Neuroimage40, 1116–1129 (2008). ArticlePubMed Google Scholar
Guibert, R., Fonta, C. & Plouraboué, F. Cerebral blood flow modeling in primate cortex. J. Cereb. Blood Flow Metab.30, 1860–1873 (2010). ArticlePubMedPubMed Central Google Scholar
Risser, L., Plouraboue, F., Cloetens, P. & Fonta, C. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. Int. J. Dev. Neurosci.27, 185–196 (2009). ArticlePubMed Google Scholar
Kleinfeld, D. et al. A guide to delineate the logic of neurovascular signaling in the brain. Front. Neuroenergetics1, 1–9 (2011). Google Scholar
Zhang, S. & Murphy, T.H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol.5, e119 (2007). ArticleCASPubMedPubMed Central Google Scholar
Smith, E.E., Schneider, J.A., Wardlaw, J.M. & Greenberg, S.M. Cerebral microinfarcts: the invisible lesions. Lancet Neurol.11, 272–282 (2012). ArticlePubMedPubMed Central Google Scholar
Brundel, M., de Bresser, J., van Dillen, J.J., Kappelle, L.J. & Biessels, G.J. Cerebral microinfarcts: a systematic review of neuropathological studies. J. Cereb. Blood Flow Metab.32, 425–436 (2012). ArticlePubMedPubMed Central Google Scholar
Kohn, A., Metz, C., Quibrera, M., Tommerdahl, M.A. & Whitsel, B.L. Functional neocortical microcircuitry demonstrated with intrinsic signal optical imaging in vitro. Neuroscience95, 51–62 (2000). ArticleCASPubMed Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCASPubMed Google Scholar
Oraevsky, A. et al. Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption. IEEE J. Sel. Top. Quantum Electron.2, 801–809 (1996). ArticleCAS Google Scholar
Nguyen, Q.-T., Tsai, P.S. & Kleinfeld, D. MPScope: a versatile software suite for multiphoton microscopy. J. Neurosci. Methods156, 351–359 (2006). ArticlePubMed Google Scholar
Emmenlauer, M. et al. XuvTools: free, fast and reliable stitching of large 3D datasets. J. Microsc.233, 42–60 (2009). ArticleCASPubMed Google Scholar
Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. published online, doi:10.1088/1742-5468/2008/10/P10008 (9 October 2008).
Fortunat, S. Community detection in graphs. Phys. Rep.486, 74–175 (2010). Google Scholar
Strehl, A. & Ghosh, J. Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res.3, 583–617 (2001). Google Scholar
Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small-world' networks. Nature393, 440–442 (1998). ArticleCASPubMed Google Scholar
Newman, M. Networks: An Introduction (Oxford University Press, New York, 2010).