Vertebrate neurogenesis is counteracted by Sox1–3 activity (original) (raw)

References

  1. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).
    Article CAS Google Scholar
  2. Kintner, C. Neurogenesis in embryos and in adult neural stem cells. J. Neurosci. 22, 639–643 (2002).
    Article CAS Google Scholar
  3. Ma, Q., Kintner, C. & Anderson, D.J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52 (1996).
    Article CAS Google Scholar
  4. Guillemot, F. Vertebrate bHLH genes and the determination of neuronal fates. Exp. Cell Res. 253, 357–364 (1999).
    Article CAS Google Scholar
  5. Morrow, E.M., Furukawa, T., Lee, J.E. & Cepko, C.L. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36 (1999).
    CAS PubMed Google Scholar
  6. Farah, M.H. et al. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702 (2000).
    CAS PubMed Google Scholar
  7. Scardigli, R., Schuurmans, C., Gradwohl, G. & Guillemot, F. Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203–217 (2001).
    Article CAS Google Scholar
  8. Davis, R.L. & Turner, D.L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357 (2001).
    Article CAS Google Scholar
  9. Kageyama, R. & Nakanishi, S. Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665 (1997).
    Article CAS Google Scholar
  10. Gradwohl, G., Fode, C. & Guillemot, F. Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol. 180, 227–241 (1996).
    Article CAS Google Scholar
  11. Lo, L., Dormand, E., Greenwood, A. & Anderson, D.J. Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells. Development 129, 1553–1567 (2002).
    CAS PubMed Google Scholar
  12. Kamachi, Y., Uchikawa, M. & Kondoh, H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182–187 (2000).
    Article CAS Google Scholar
  13. Uwanogho, D. et al. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995).
    Article CAS Google Scholar
  14. Pevny, L.H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).
    CAS PubMed Google Scholar
  15. Wegner, M. From head to toes: the multiple facets of Sox proteins. Nuc. Acids Res. 27, 1409–1420 (1999).
    Article CAS Google Scholar
  16. Stevanovic, M., Lovell-Badge, R., Collignon, J. & Goodfellow, P.N. SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993).
    Article CAS Google Scholar
  17. Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. & Episkopou, V. Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev. 12, 776–781 (1998).
    Article CAS Google Scholar
  18. Overton, P., Meadows, L., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129, 4219–4228 (2002).
    CAS PubMed Google Scholar
  19. Buescher, M., Hing, F. & Chia, W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development 129, 4193–4203 (2002).
    CAS PubMed Google Scholar
  20. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes. Dev. 9, 2635–2645 (1995).
    Article CAS Google Scholar
  21. Collignon, J. et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509–520 (1996).
    CAS PubMed Google Scholar
  22. Ambrosetti, D.C., Basilico, C. & Dailey, L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. Biol. 17, 6321–6329 (1997).
    Article CAS Google Scholar
  23. Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19, 5453–5465 (1999).
    Article CAS Google Scholar
  24. Avilion, A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).
    Article CAS Google Scholar
  25. Roztocil, T., Matter-Sadzinski, L., Alliod, C., Ballivet, M. & Matter, J.M. NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124, 3263–3272 (1997).
    CAS PubMed Google Scholar
  26. Fode, C. et al. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494 (1998).
    Article CAS Google Scholar
  27. Caccamo, D. et al. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest. 60, 390–398 (1989).
    CAS PubMed Google Scholar
  28. Mullen, R.J., Buck, C.R. & Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).
    CAS PubMed Google Scholar
  29. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).
    Article CAS Google Scholar
  30. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).
    Article CAS Google Scholar
  31. Westendorf, J.M., Rao, P.N. & Gerace, L. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Natl. Acad. Sci. USA 91, 714–718 (1994).
    Article CAS Google Scholar
  32. Kelman, Z. PCNA: structure, functions and interaction. Oncogene 14, 629–640 (1997).
    Article CAS Google Scholar
  33. Botquin, V. et al. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev. 12, 2073–2090 (1998).
    Article CAS Google Scholar
  34. Berk, A.J. et al. Mechanisms of viral activators. Cold Spring Harb. Symp. Quant. Biol. 63, 243–252 (1998).
    Article CAS Google Scholar
  35. Smith, S.T. & Jaynes, J.B. A conserved region of engrailed, shared among all en-, gsc-, NK1, NK2-, and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122, 3141–3150 (1996).
    CAS PubMed PubMed Central Google Scholar
  36. Muhr, J., Andersson, E., Persson, M., Jessell, T.M. & Ericson, J. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861–873 (2001).
    Article CAS Google Scholar
  37. Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).
    Article CAS Google Scholar
  38. Novitch, B.G., Chen, A.I. & Jessell, T.M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).
    Article CAS Google Scholar
  39. Takebayashi, K. et al. Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal. EMBO J. 16, 384–395 (1997).
    Article CAS Google Scholar
  40. Morgan, B.A. & Fekete, D.M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996).
    Article CAS Google Scholar
  41. Jouve, C. et al. Notch signaling is required for cyclic expression of the hairy-like gene HES1 in presomitic mesoderm. Development 127, 1421–1429 (2000).
    CAS PubMed Google Scholar
  42. Kim, J., Lo, L., Dormand, E. & Anderson, D. Sox10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).
    Article CAS Google Scholar
  43. Koyano-Nakagawa, N. et al. Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127, 4203–4216 (2000).
    CAS PubMed Google Scholar
  44. Yokota, Y. Id and development. Oncogene 20, 8290–8298 (2001).
    Article CAS Google Scholar
  45. Zappone, M. et al. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382 (2000).
    CAS PubMed Google Scholar
  46. Wilson, S.I., Graziano, E., Harland, R., Jessell, T.M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).
    Article CAS Google Scholar
  47. Jasoni, C.L., Walker, M.B., Morris, M.D. & Reh, T.A. A chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing nervous system. Development 120, 769–783 (1994).
    CAS PubMed Google Scholar
  48. Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R. & Kondoh, H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–2532 (1998).
    CAS PubMed Google Scholar
  49. Perez, S.E., Rebelo, S. & Anderson, D.J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728 (1999).
    CAS PubMed Google Scholar
  50. Briscoe, J., Pierani, A., Jessell, T.M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).
    Article CAS Google Scholar

Download references