Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases (original) (raw)

References

  1. Parnavelas, J.G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).
    Article CAS PubMed Google Scholar
  2. Boulder Committee. Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261 (1970).
  3. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).
    Article CAS PubMed Google Scholar
  4. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).
    Article CAS PubMed Google Scholar
  5. Privat, A. Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 40, 281–323 (1975).
    Article CAS PubMed Google Scholar
  6. Chenn, A. & McConnell, S.K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).
    Article CAS PubMed Google Scholar
  7. Takahashi, T., Nowakowski, R.S. & Caviness, V.S. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  8. Cai, L., Hayes, N.L., Takahashi, T., Caviness, V.S., Jr., & Nowakowski, R.S. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. J. Neurosci. Res. 69, 731–744 (2002).
    Article CAS PubMed Google Scholar
  9. Morest, D.K. A study of neurogenesis in the forebrain of opossum pouch young. Zeitschrift fur Anatomie und Entwicklungsgeschichte 130, 265–305 (1970).
    Article CAS PubMed Google Scholar
  10. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).
    Article CAS PubMed Google Scholar
  11. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).
    Article CAS PubMed Google Scholar
  12. Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).
    Article CAS PubMed Google Scholar
  13. Noctor, S.C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  14. Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS Precursor Subtypes and Radial Glia. Dev. Biol. 229, 15–30 (2001).
    Article CAS PubMed Google Scholar
  15. Mione, M.C., Danevic, C., Boardman, P., Harris, B. & Parnavelas, J.G. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J. Neurosci. 14, 107–123 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  16. Reid, C.B., Tavazoie, S.F. & Walsh, C.A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450 (1997).
    CAS PubMed Google Scholar
  17. Schwartz, M.L., Rakic, P. & Goldman-Rakic, P.S. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Proc. Natl. Acad. Sci. USA 88, 1354–1358 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  18. Parnavelas, J.G. & Lieberman, A.R. An ultrastructural study of the maturation of neuronal somata in the visual cortex of the rat. Anat. Embryol. (Berl.) 157, 311–328 (1979).
    Article CAS Google Scholar
  19. Shoukimas, G.M. & Hinds, J.W. The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J. Comp. Neurol. 179, 795–830 (1978).
    Article CAS PubMed Google Scholar
  20. Miller, M.W. Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogenesis of local circuit neurons. Brain Res. 390, 271–285 (1986).
    Article CAS PubMed Google Scholar
  21. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J. Interneuron migration from basal forebrain to neocortex: dependence on dlx genes. Science 278, 474–476 (1997).
    Article CAS PubMed Google Scholar
  22. de Carlos, J.A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  23. Novitch, B.G., Chen, A.I. & Jessell, T.M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).
    Article CAS PubMed Google Scholar
  24. Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).
    Google Scholar
  25. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  26. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).
    CAS PubMed Google Scholar
  27. Nadarajah, B., Alifragis, P., Wong, R.O. & Parnavelas, J.G. Ventricle-directed migration in the developing cerebral cortex. Nat. Neurosci. 5, 218–224 (2002).
    Article CAS PubMed Google Scholar
  28. Gleeson, J.G. & Walsh, C.A. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000).
    Article CAS PubMed Google Scholar
  29. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).
    Article CAS PubMed Google Scholar
  30. Kakita, A. et al. Bilateral periventricular nodular heterotopia due to filamin 1 gene mutation: widespread glomeruloid microvascular anomaly and dysplastic cytoarchitecture in the cerebral cortex. Acta Neuropathol. (Berl.) 104, 649–657 (2002).
    CAS Google Scholar
  31. Schmechel, D.E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 115–152 (1979).
    Article CAS Google Scholar
  32. Voigt, T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289, 74–88 (1989).
    Article CAS PubMed Google Scholar
  33. Berry, M. & Rogers, A.W. The migration of neuroblasts in the developing cerebral cortex. J. Anat. 99, 691–709 (1965).
    CAS PubMed PubMed Central Google Scholar
  34. Nadarajah, B. & Parnavelas, J.G. Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci. 3, 423–432 (2002).
    Article CAS PubMed Google Scholar
  35. Parnavelas, J.G., Barfield, J.A., Franke, E. & Luskin, M.B. Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb. Cortex 1, 463–468 (1991).
    Article CAS PubMed Google Scholar
  36. Walsh, C. & Cepko, C.L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).
    Article CAS PubMed Google Scholar
  37. O'Rourke, N.A., Dailey, M.E., Smith, S.J. & McConnell, S.K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).
    Article CAS PubMed Google Scholar
  38. Tan, S.S. & Breen, S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362, 638–640 (1993).
    Article CAS PubMed Google Scholar
  39. Reid, C.B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).
    Article CAS PubMed Google Scholar
  40. Kornack, D.R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995).
    Article CAS PubMed Google Scholar
  41. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).
    Article CAS PubMed Google Scholar
  42. Zhong, W., Jiang, M.M., Weinmaster, G., Jan, L.Y. & Jan, Y.N. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 124, 1887–1897 (1997).
    CAS PubMed Google Scholar
  43. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).
    Article CAS PubMed Google Scholar
  44. Shen, Q., Zhong, W., Jan, Y.N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853 (2002).
    CAS PubMed Google Scholar
  45. Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y. & Jan, Y.N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).
    Article CAS PubMed Google Scholar
  46. Spana, E.P. & Doe, C.Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187–3195 (1995).
    CAS PubMed Google Scholar
  47. Tarabykin, V., Stoykova, A., Usman, N., Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).
    CAS PubMed Google Scholar
  48. Smart, I.H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).
    Article PubMed Google Scholar
  49. Doetsch, F., Caillé, I., Lim, D.A., García-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).
    Article CAS PubMed Google Scholar
  50. Seri, B., García-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).
    Article CAS PubMed PubMed Central Google Scholar

Download references