Light-activated ion channels for remote control of neuronal firing (original) (raw)

References

  1. Nerbonne, J.M. Caged compounds: tools for illuminating neuronal responses and connections. Curr. Opin. Neurobiol. 6, 379–386 (1996).
    Article CAS PubMed Google Scholar
  2. James, D.A., Burns, D.C. & Woolley, G.A. Kinetic characterization of ribonuclease S mutants containing photoisomerizable phenylazophenylalanine residues. Protein Eng. 14, 983–991 (2001).
    Article CAS PubMed Google Scholar
  3. Flint, D.G., Kumita, J.R., Smart, O.S. & Woolley, G.A. Using an azobenzene cross-linker to either increase or decrease peptide helix content upon _trans_-to-cis photoisomerization. Chem. Biol. 9, 391–397 (2002).
    Article CAS PubMed Google Scholar
  4. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H. & Erlanger, B.F. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).
    Article CAS PubMed PubMed Central Google Scholar
  5. Katz, L.C. & Dalva, M.B. Scanning laser photostimulation: a new approach for analyzing brain circuits. J. Neurosci. Methods 54, 205–218 (1994).
    Article CAS PubMed Google Scholar
  6. Callaway, E.M. Caged neurotransmitters. Shedding light on neural circuits. Curr. Biol. 4, 1010–1012 (1994).
    Article CAS PubMed Google Scholar
  7. Nitabach, M., Blau, J. & Holmes, T. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109, 485–495 (2002).
    Article CAS PubMed Google Scholar
  8. Johns, D., Marx, R., Mains, R., O'Rourke, B. & Marban, E. Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691–1697 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  9. White, B. et al. Targeted attenuation of electrical activity in Drosophila using a genetically modified K+ channel. Neuron 31, 699–711 (2001).
    Article CAS PubMed Google Scholar
  10. Lechner, H., Lein, E. & Callaway, E. A genetic method for selective and quickly reversible silencing of mammalian neurons. J. Neurosci. 22, 5287–5290 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  11. Slimko, E., McKinney, S., Anderson, D., Davidson, N. & Lester, H. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci. 22, 7373–7379 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  12. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).
    Article CAS PubMed Google Scholar
  13. Sigworth, F. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994).
    Article CAS PubMed Google Scholar
  14. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).
    Article CAS PubMed Google Scholar
  15. MacKinnon, R. & Yellen, G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250, 276–279 (1990).
    Article CAS PubMed Google Scholar
  16. Heginbotham, L. & MacKinnon, R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483–491 (1992).
    Article CAS PubMed Google Scholar
  17. Blaustein, R., Cole, P., Williams, C. & Miller, C. Tethered blockers as molecular 'tape measures' for a voltage-gated K+ channel. Nat. Struct. Biol. 7, 309–311 (2000).
    Article CAS PubMed Google Scholar
  18. Doyle, D. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
    Article CAS PubMed Google Scholar
  19. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).
    Article CAS PubMed Google Scholar
  20. Knoll, H. Photoisomerism of azobenzenes. in CRC Handbook of Organic Photochemistry and Photobiology edn. 2 (eds. Horspool, W. & Lenci, F.) 89.1–89.16 (CRC Press, Boca Raton, Florida, USA, 2004).
    Google Scholar
  21. Choi, K., Aldrich, R. & Yellen, G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl. Acad. Sci. USA 88, 5092–5095 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  22. Hoshi, T., Zagotta, W. & Aldrich, R. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).
    Article CAS PubMed Google Scholar
  23. Lopez-Barneo, J., Hoshi, T., Heinemann, S. & Aldrich, R. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).
    CAS PubMed Google Scholar
  24. Lopez, G., Jan, Y. & Jan, L. Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron 7, 327–336 (1991).
    Article CAS PubMed Google Scholar
  25. Blaustein, R. Kinetics of tethering quaternary ammonium compounds to K+ channels. J. Gen. Physiol. 120, 203–216 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  26. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).
    Article CAS PubMed Google Scholar
  27. Sutherland, M.L. et al. Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc. Natl. Acad. Sci. USA 96, 2451–2455 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  28. Gu, C., Jan, Y.N. & Jan, L.Y. A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301, 646–649 (2003).
    Article CAS PubMed Google Scholar
  29. Karschin, A., Aiyar, J., Gouin, A., Davidson, N. & Lester, H.A. K+ channel expression in primary cell cultures mediated by vaccinia virus. FEBS Lett. 278, 229–233 (1991).
    Article CAS PubMed Google Scholar
  30. Djurisic, M. et al. Optical monitoring of neural activity using voltage-sensitive dyes. Methods Enzymol. 361, 423–451 (2003).
    Article CAS PubMed Google Scholar
  31. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).
    Article CAS PubMed Google Scholar

Download references