Molecular and anatomical determinants of central leptin resistance (original) (raw)
Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature395, 763–770 (1998). ArticleCAS Google Scholar
Elmquist, J.K., Elias, C.F. & Saper, C.B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron22, 221–232 (1999). ArticleCAS Google Scholar
Bates, S.H. & Myers, M.G., Jr. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol. Metab.14, 447–452 (2003). ArticleCAS Google Scholar
Farooqi, I.S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest.110, 1093–1103 (2002). ArticleCAS Google Scholar
Kamohara, S., Burcelin, R., Halaas, J.L., Friedman, J.M. & Charron, M.J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature389, 374–377 (1997). ArticleCAS Google Scholar
Burcelin, R. et al. Acute intravenuous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice. Diabetes48, 1264–1269 (1999). ArticleCAS Google Scholar
Liu, L. et al. Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J. Biol. Chem.273, 31160–31167 (1998). ArticleCAS Google Scholar
Schwartz, M.W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes45, 531–535 (1996). ArticleCAS Google Scholar
Kloek, C. et al. Regulation of Jak kinases by intracellular leptin receptor sequences. J. Biol. Chem.277, 41547–41555 (2002). ArticleCAS Google Scholar
Schwartz, M.W., Woods, S.C., Porte, D., Jr, Seeley, R.J. & Baskin, D.G. Central nervous system control of food intake. Nature404, 661–671 (2000). ArticleCAS Google Scholar
Elias, C.F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron23, 775–786 (1999). ArticleCAS Google Scholar
Butler, A.A. & Cone, R.D. The melanocortin receptors: lessons from knockout models. Neuropeptides36, 77–84 (2002). ArticleCAS Google Scholar
Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature411, 480–484 (2001). ArticleCAS Google Scholar
Morton, G.J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fak/fak) rats. Endocrinology144, 2016–2024 (2003). ArticleCAS Google Scholar
Coppari, R. et al. The hypothalamic arcuate nucleus: A key site for mediating leptin's effects on glucose metabolism and locomotor activity. Cell Metabolism1, 63–72 (2005). ArticleCAS Google Scholar
Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron42, 983–991 (2004). ArticleCAS Google Scholar
Ihle, J.N. & Kerr, I.M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet.11, 69–74 (1995). ArticleCAS Google Scholar
White, D.W., Kuropatwinski, K.K., Devos, R., Baumann, H. & Tartaglia, L.A. Leptin receptor (OB-R) signaling. J. Biol. Chem.272, 4065–4071 (1997). ArticleCAS Google Scholar
Banks, A.S., Davis, S.M., Bates, S.H. & Myers, M.G., Jr. Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem.275, 14563–14572 (2000). ArticleCAS Google Scholar
Bjorbaek, C. et al. Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem.276, 4747–4755 (2001). ArticleCAS Google Scholar
Bjorbaek, C. et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J. Biol. Chem.275, 40649–40657 (2000). ArticleCAS Google Scholar
Munzberg, H., Huo, L., Nillni, E.A., Hollenberg, A.N. & Bjorbaek, C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelano–cortin gene expression by leptin. Endocrinology144, 2121–2131 (2003). ArticleCAS Google Scholar
Bates, S.H. et al. STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature421, 856–859 (2003). ArticleCAS Google Scholar
Sasaki, A. et al. CIS3/SOCS3 suppresses erythropoietin signaling by binding the EPO receptor and JAK2. J. Biol. Chem. (2000).
Dunn, S.L. et al. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and SOCS3. Mol. Endocrinol. (2004).
Feng, J. et al. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol.17, 2497–2501 (1997). ArticleCAS Google Scholar
Carpino, N. et al. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol. Cell. Biol.22, 7491–7500 (2002). ArticleCAS Google Scholar
Argetsinger, L.S. et al. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol. Cell. Biol.24, 4955–4967 (2004). ArticleCAS Google Scholar
Feener, E.P., Rosario, F., Dunn, S.L., Stancheva, Z. & Myers, M.G., Jr. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol. Cell. Biol.24, 4968–4978 (2004). ArticleCAS Google Scholar
Kurzer, J.H. et al. Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-B beta. Mol. Cell. Biol.24, 4557–4570 (2004). ArticleCAS Google Scholar
Niswender, K.D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes52, 227–231 (2003). ArticleCAS Google Scholar
Argetsinger, L.S. et al. Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J. Biol. Chem.270, 14685–14692 (1995). ArticleCAS Google Scholar
Burks, D.J. et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature407, 377–382 (2000). ArticleCAS Google Scholar
Niswender, K.D. et al. Intracellular signalling: key enzyme in leptin-induced anorexia. Nature413, 794–795 (2001). ArticleCAS Google Scholar
Zhang, E.E., Chapeau, E., Hagihara, K. & Feng, G.S. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. USA101, 16064–16069 (2004). ArticleCAS Google Scholar
Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl. Acad. Sci. USA101, 4661–4666 (2004). ArticleCAS Google Scholar
Bates, S.H. et al. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes53, 3067–3073 (2004). ArticleCAS Google Scholar
Bates, S.H., Kulkarni, R.N., Seifert, M. & Meyers, M.G. Jr. STAT3-independent signaling contributes to regulation of glucose homeostasis by leptin. Cell Metabolism1, 169–178 (2005). ArticleCAS Google Scholar
Roth, J. Diabetes and obesity. Diabetes Metab. Rev.13, 1–2 (1998). Article Google Scholar
Licinio, J. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl. Acad. Sci. USA101, 4531–4536 (2004). ArticleCAS Google Scholar
Oral, E.A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med.346, 570–578 (2002). ArticleCAS Google Scholar
Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S. & Goldstein, J.L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature401, 73–76 (1999). ArticleCAS Google Scholar
Welt, C.K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med.351, 987–997 (2004). ArticleCAS Google Scholar
Mantzoros, C.S. & Flier, J.S. Editorial: leptin as a therapeutic agent–trials and tribulations. J. Clin. Endocrinol. Metab.85, 4000–4002 (2000). CASPubMed Google Scholar
Frederich, R.C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med.1, 1311–1314 (1995). ArticleCAS Google Scholar
Van Heek, M. et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest.99, 385–390 (1997). ArticleCAS Google Scholar
El Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C. & Flier, J.S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest.105, 1827–1832 (2000). ArticleCAS Google Scholar
Levin, B.E., Dunn-Meynell, A.A. & Banks, W.A. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am. J. Physiol. Regul. Integr. Comp. Physiol.286, R143–R150 (2004). ArticleCAS Google Scholar
Krisch, B. & Leonhardt, H. The functional and structural border of the neurohemal region of the median eminence. Cell Tissue Res.192, 327–339 (1978). ArticleCAS Google Scholar
Peruzzo, B. et al. A second look at the barriers of the medial basal hypothalamus. Exp. Brain Res.132, 10–26 (2000). ArticleCAS Google Scholar
Munzberg, H., Flier, J.S. & Bjorbaek, C. Region-specific leptin resistance within the hypothalamus of diet-induced-obese mice. Endocrinology (2004).
Zabolotny, J.M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell2, 489–495 (2002). ArticleCAS Google Scholar
Cheng, A. et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. Cell2, 497–503 (2002). ArticleCAS Google Scholar
Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell1, 619–625 (1998). ArticleCAS Google Scholar
Howard, J.K. et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat. Med. (2004).
Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. (2004).
Tups, A. et al. Photoperiodic regulation of leptin sensitivity in the Siberian hamster, Phodopus sungorus, is reflected in arcuate nucleus SOCS-3 (suppressor of cytokine signaling) gene expression. Endocrinology145, 1185–1193 (2004). ArticleCAS Google Scholar
Emanuelli, B. et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J. Biol. Chem.276, 47944–47949 (2001). ArticleCAS Google Scholar
Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem.277, 42394–42398 (2002). ArticleCAS Google Scholar
Ueki, K., Kondo, T. & Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol.24, 5434–5446 (2004). ArticleCAS Google Scholar
Rossetti, L. Hypothalamic sensing of fatty acids. Nat. Neurosci.8 579–584 (2005).
Hu, L., Fernstrom, J.D. & Goldsmith, P.C. Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology68, 77–88 (1998). ArticleCAS Google Scholar