Astrocyte-mediated control of cerebral blood flow (original) (raw)
References
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci.5, 347–360 (2004). ArticleCAS Google Scholar
Lauritzen, M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci.6, 77–85 (2005). ArticleCAS Google Scholar
Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. USA100, 13081–13086 (2003). ArticleCAS Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003). ArticleCAS Google Scholar
Hirase, H. A multi-photon window onto neuronal-glial-vascular communication. Trends Neurosci.28, 217–219 (2005). ArticleCAS Google Scholar
Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature431, 195–199 (2004). ArticleCAS Google Scholar
Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol.2, E96 (2004). Article Google Scholar
Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med.11, 973–981 (2005). ArticleCAS Google Scholar
Filosa, J.A., Bonev, A.D. & Nelson, M.T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res.95, 73–81 (2004). Article Google Scholar
Ueki, M., Mies, G. & Hossmann, K.A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand.36, 318–322 (1992). ArticleCAS Google Scholar
Lindauer, U., Villringer, A. & Dirnagl, U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am. J. Physiol.264, H1223–H1228 (1993). CASPubMed Google Scholar
Gordon, E.L., Meno, J.R., Ngai, A.C., Lam, A.M. & Winn, H.R. Anesthetic-dependent pial arteriolar response to ethanol. J. Neurosurg.83, 875–877 (1995). ArticleCAS Google Scholar
Farooqui, A.A., Yang, H.C., Rosenberger, T.A. & Horrocks, L.A. Phospholipase A2 and its role in brain tissue. J. Neurochem.69, 889–901 (1997). ArticleCAS Google Scholar
Xu, J. et al. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot. Essent. Fatty Acids69, 437–448 (2003). ArticleCAS Google Scholar
Stephenson, D.T. et al. Calcium-sensitive cytosolic phospholipase A2 (cPLA2) is expressed in human brain astrocytes. Brain Res.637, 97–105 (1994). ArticleCAS Google Scholar
Xu, J., Yu, S., Sun, A.Y. & Sun, G.Y. Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic. Biol. Med.34, 1531–1543 (2003). ArticleCAS Google Scholar
Hurley, S.D., Olschowka, J.A. & O'Banion, M.K. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma19, 1–15 (2002). Article Google Scholar
Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci.6, 43–50 (2003). ArticleCAS Google Scholar
Niwa, K., Haensel, C., Ross, M.E. & Iadecola, C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ. Res.88, 600–608 (2001). ArticleCAS Google Scholar
Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci.20, 763–770 (2000). ArticleCAS Google Scholar
Ellis, E.F., Wei, E.P. & Kontos, H.A. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. Am. J. Physiol.237, H381–H385 (1979). CASPubMed Google Scholar
Harder, D.R., Campbell, W.B. & Roman, R.J. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J. Vasc. Res.32, 79–92 (1995). ArticleCAS Google Scholar
Wang, M.H. et al. Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. J. Pharmacol. Exp. Ther.284, 966–973 (1998). CASPubMed Google Scholar
Peng, X. et al. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am. J. Physiol. Heart Circ. Physiol.283, H2029–H2037 (2002). ArticleCAS Google Scholar
Gibson, C.L., Coughlan, T.C. & Murphy, S.P. Glial nitric oxide and ischemia. Glia50, 417–426 (2005). Article Google Scholar
Yang, G., Chen, G., Ebner, T.J. & Iadecola, C. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol.277, R1760–R1770 (1999). ArticleCAS Google Scholar
Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA95, 15735–15740 (1998). ArticleCAS Google Scholar
Dunwiddie, T.V., Diao, L. & Proctor, W.R. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J. Neurosci.17, 7673–7682 (1997). ArticleCAS Google Scholar
Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci.24, 31–55 (2001). ArticleCAS Google Scholar
Yermakova, A.V., Rollins, J., Callahan, L.M., Rogers, J. & O'Banion, M.K. Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J. Neuropathol. Exp. Neurol.58, 1135–1146 (1999). ArticleCAS Google Scholar
Sakabe, T. & Siesjo, B.K. The effect of indomethacin on the blood flow-metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol. Scand.107, 283–284 (1979). ArticleCAS Google Scholar
Bruhn, H., Fransson, P. & Frahm, J. Modulation of cerebral blood oxygenation by indomethacin: MRI at rest and functional brain activation. J. Magn. Reson. Imaging13, 325–334 (2001). ArticleCAS Google Scholar
Bakalova, R.A., Matsuura, T. & Kanno, I. Cyclooxygenase-pathway participates in the regulation of regional cerebral blood flow in response to neuronal activation under normo- and hypercapnia. Prostaglandins Leukot. Essent. Fatty Acids67, 379–388 (2002). ArticleCAS Google Scholar
Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci.4, 803–812 (2001). ArticleCAS Google Scholar
Anderson, C.M. & Nedergaard, M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci.26, 340–344; author reply 344–345 (2003). ArticleCAS Google Scholar
del Zoppo, G.J. & Hallenbeck, J.M. Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res.98, 73–81 (2000). ArticleCAS Google Scholar
Vavilala, M.S., Lee, L.A. & Lam, A.M. Cerebral blood flow and vascular physiology. Anesthesiol. Clin. N. Am.20, 247–264 (2002). Article Google Scholar
Smith, C.D. et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology53, 1391–1396 (1999). ArticleCAS Google Scholar
Grossman, M. et al. Neural basis for verb processing in Alzheimer's disease: an fMRI study. Neuropsychology17, 658–674 (2003). Article Google Scholar
Rombouts, S.A., Barkhof, F., Van Meel, C.S. & Scheltens, P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry73, 665–671 (2002). ArticleCAS Google Scholar
Niwa, K. et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol.283, H315–H323 (2002). ArticleCAS Google Scholar
Zlokovic, B.V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci.28, 202–208 (2005). ArticleCAS Google Scholar
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. (2005).
Hademenos, G.J., Massoud, T.F. & Vinuela, F. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery38, 1005–1015 (1996). ArticleCAS Google Scholar
Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med.10, 821–827 (2004). ArticleCAS Google Scholar