Astrocyte-mediated control of cerebral blood flow (original) (raw)

References

  1. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).
    Article CAS Google Scholar
  2. Lauritzen, M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci. 6, 77–85 (2005).
    Article CAS Google Scholar
  3. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. USA 100, 13081–13086 (2003).
    Article CAS Google Scholar
  4. Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).
    Article CAS Google Scholar
  5. Hirase, H. A multi-photon window onto neuronal-glial-vascular communication. Trends Neurosci. 28, 217–219 (2005).
    Article CAS Google Scholar
  6. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).
    Article CAS Google Scholar
  7. Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).
    Article Google Scholar
  8. Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).
    Article CAS Google Scholar
  9. Filosa, J.A., Bonev, A.D. & Nelson, M.T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res. 95, 73–81 (2004).
    Article Google Scholar
  10. Ueki, M., Mies, G. & Hossmann, K.A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322 (1992).
    Article CAS Google Scholar
  11. Lindauer, U., Villringer, A. & Dirnagl, U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am. J. Physiol. 264, H1223–H1228 (1993).
    CAS PubMed Google Scholar
  12. Gordon, E.L., Meno, J.R., Ngai, A.C., Lam, A.M. & Winn, H.R. Anesthetic-dependent pial arteriolar response to ethanol. J. Neurosurg. 83, 875–877 (1995).
    Article CAS Google Scholar
  13. Farooqui, A.A., Yang, H.C., Rosenberger, T.A. & Horrocks, L.A. Phospholipase A2 and its role in brain tissue. J. Neurochem. 69, 889–901 (1997).
    Article CAS Google Scholar
  14. Xu, J. et al. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot. Essent. Fatty Acids 69, 437–448 (2003).
    Article CAS Google Scholar
  15. Stephenson, D.T. et al. Calcium-sensitive cytosolic phospholipase A2 (cPLA2) is expressed in human brain astrocytes. Brain Res. 637, 97–105 (1994).
    Article CAS Google Scholar
  16. Xu, J., Yu, S., Sun, A.Y. & Sun, G.Y. Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic. Biol. Med. 34, 1531–1543 (2003).
    Article CAS Google Scholar
  17. Hurley, S.D., Olschowka, J.A. & O'Banion, M.K. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma 19, 1–15 (2002).
    Article Google Scholar
  18. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).
    Article CAS Google Scholar
  19. Niwa, K., Haensel, C., Ross, M.E. & Iadecola, C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ. Res. 88, 600–608 (2001).
    Article CAS Google Scholar
  20. Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).
    Article CAS Google Scholar
  21. Ellis, E.F., Wei, E.P. & Kontos, H.A. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. Am. J. Physiol. 237, H381–H385 (1979).
    CAS PubMed Google Scholar
  22. Harder, D.R., Campbell, W.B. & Roman, R.J. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J. Vasc. Res. 32, 79–92 (1995).
    Article CAS Google Scholar
  23. Wang, M.H. et al. Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. J. Pharmacol. Exp. Ther. 284, 966–973 (1998).
    CAS PubMed Google Scholar
  24. Peng, X. et al. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am. J. Physiol. Heart Circ. Physiol. 283, H2029–H2037 (2002).
    Article CAS Google Scholar
  25. Gibson, C.L., Coughlan, T.C. & Murphy, S.P. Glial nitric oxide and ischemia. Glia 50, 417–426 (2005).
    Article Google Scholar
  26. Yang, G., Chen, G., Ebner, T.J. & Iadecola, C. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol. 277, R1760–R1770 (1999).
    Article CAS Google Scholar
  27. Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15735–15740 (1998).
    Article CAS Google Scholar
  28. Dunwiddie, T.V., Diao, L. & Proctor, W.R. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J. Neurosci. 17, 7673–7682 (1997).
    Article CAS Google Scholar
  29. Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).
    Article CAS Google Scholar
  30. Yermakova, A.V., Rollins, J., Callahan, L.M., Rogers, J. & O'Banion, M.K. Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J. Neuropathol. Exp. Neurol. 58, 1135–1146 (1999).
    Article CAS Google Scholar
  31. Sakabe, T. & Siesjo, B.K. The effect of indomethacin on the blood flow-metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol. Scand. 107, 283–284 (1979).
    Article CAS Google Scholar
  32. Bruhn, H., Fransson, P. & Frahm, J. Modulation of cerebral blood oxygenation by indomethacin: MRI at rest and functional brain activation. J. Magn. Reson. Imaging 13, 325–334 (2001).
    Article CAS Google Scholar
  33. Bakalova, R.A., Matsuura, T. & Kanno, I. Cyclooxygenase-pathway participates in the regulation of regional cerebral blood flow in response to neuronal activation under normo- and hypercapnia. Prostaglandins Leukot. Essent. Fatty Acids 67, 379–388 (2002).
    Article CAS Google Scholar
  34. Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).
    Article CAS Google Scholar
  35. Anderson, C.M. & Nedergaard, M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci. 26, 340–344; author reply 344–345 (2003).
    Article CAS Google Scholar
  36. del Zoppo, G.J. & Hallenbeck, J.M. Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res. 98, 73–81 (2000).
    Article CAS Google Scholar
  37. Vavilala, M.S., Lee, L.A. & Lam, A.M. Cerebral blood flow and vascular physiology. Anesthesiol. Clin. N. Am. 20, 247–264 (2002).
    Article Google Scholar
  38. Smith, C.D. et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology 53, 1391–1396 (1999).
    Article CAS Google Scholar
  39. Grossman, M. et al. Neural basis for verb processing in Alzheimer's disease: an fMRI study. Neuropsychology 17, 658–674 (2003).
    Article Google Scholar
  40. Rombouts, S.A., Barkhof, F., Van Meel, C.S. & Scheltens, P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 73, 665–671 (2002).
    Article CAS Google Scholar
  41. Niwa, K. et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol. 283, H315–H323 (2002).
    Article CAS Google Scholar
  42. Zlokovic, B.V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005).
    Article CAS Google Scholar
  43. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. (2005).
  44. Hademenos, G.J., Massoud, T.F. & Vinuela, F. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery 38, 1005–1015 (1996).
    Article CAS Google Scholar
  45. Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821–827 (2004).
    Article CAS Google Scholar

Download references