FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains (original) (raw)
Dougherty, J.D. & Geschwind, D.H. Progress in realizing the promise of microarrays in systems neurobiology. Neuron45, 183–185 (2005). ArticleCAS Google Scholar
Mirnics, K. & Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nat. Neurosci.7, 434–439 (2004). ArticleCAS Google Scholar
Cao, Y. & Dulac, C. Profiling brain transcription: neurons learn a lesson from yeast. Curr. Opin. Neurobiol.11, 615–620 (2001). ArticleCAS Google Scholar
Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron38, 161–175 (2003). ArticleCAS Google Scholar
Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci.23, 3607–3615 (2003). ArticleCAS Google Scholar
Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron45, 207–221 (2005). ArticleCAS Google Scholar
Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell112, 607–618 (2003). ArticleCAS Google Scholar
Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J.D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron47, 817–831 (2005). ArticleCAS Google Scholar
Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci.2, 861–870 (2001). ArticleCAS Google Scholar
Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol.15, 859–865 (1997). ArticleCAS Google Scholar
Gong, S., Yang, X.W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res.12, 1992–1998 (2002). ArticleCAS Google Scholar
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature425, 917–925 (2003). ArticleCAS Google Scholar
Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci.15, 133–139 (1992). ArticleCAS Google Scholar
Packard, M.G. & Knowlton, B.J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci.25, 563–593 (2002). ArticleCAS Google Scholar
Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci.12, 366–375 (1989). ArticleCAS Google Scholar
DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci.13, 281–285 (1990). ArticleCAS Google Scholar
Wichmann, T. & DeLong, M.R. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann. NY Acad. Sci.991, 199–213 (2003). ArticleCAS Google Scholar
Chao, J. & Nestler, E.J. Molecular neurobiology of drug addiction. Annu. Rev. Med.55, 113–132 (2004). ArticleCAS Google Scholar
Graybiel, A.M. & Rauch, S.L. Toward a neurobiology of obsessive-compulsive disorder. Neuron28, 343–347 (2000). ArticleCAS Google Scholar
Saka, E. & Graybiel, A.M. Pathophysiology of Tourette's syndrome: striatal pathways revisited. Brain Dev.25 suppl. Suppl 1, S15–S19 (2003). Article Google Scholar
Meyer-Lindenberg, A. et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat. Neurosci.5, 267–271 (2002). ArticleCAS Google Scholar
Rogers, M.A., Bradshaw, J.L., Pantelis, C. & Phillips, J.G. Frontostriatal deficits in unipolar major depression. Brain Res. Bull.47, 297–310 (1998). ArticleCAS Google Scholar
Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science250, 1429–1432 (1990). ArticleCAS Google Scholar
Hersch, S.M. et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J. Neurosci.15, 5222–5237 (1995). ArticleCAS Google Scholar
Schiffmann, S.N. & Vanderhaeghen, J.J. Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J. Neurosci.13, 1080–1087 (1993). ArticleCAS Google Scholar
Ince, E., Ciliax, B.J. & Levey, A.I. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse27, 357–366 (1997). ArticleCAS Google Scholar
Fishell, G. & van der Kooy, D. Pattern formation in the striatum: neurons with early projections to the substantia nigra survive the cell death period. J. Comp. Neurol.312, 33–42 (1991). ArticleCAS Google Scholar
Sabatti, C., Karsten, S.L. & Geschwind, D.H. Thresholding rules for recovering a sparse signal from microarray experiments. Math. Biosci.176, 17–34 (2002). ArticleCAS Google Scholar
Dennis, G. Jr. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol.4, 3 (2003). Article Google Scholar
Svenningsson, P. et al. DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol.44, 269–296 (2004). ArticleCAS Google Scholar
Ishida, N. & Kawakita, M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch.447, 768–775 (2004). ArticleCAS Google Scholar
Goto, S. et al. UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat. Cell Biol.3, 816–822 (2001). ArticleCAS Google Scholar
Selva, E.M. et al. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nat. Cell Biol.3, 809–815 (2001). ArticleCAS Google Scholar
Berninsone, P. et al. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proc. Natl. Acad. Sci. USA98, 3738–3743 (2001). ArticleCAS Google Scholar
Warming, S. et al. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood101, 1934–1940 (2003). ArticleCAS Google Scholar
Bond, H.M. et al. Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood103, 2062–2070 (2004). ArticleCAS Google Scholar
Hentges, K.E. et al. Evi3, a zinc-finger protein related to EBFAZ, regulates EBF activity in B-cell leukemia. Oncogene24, 1220–1230 (2005). ArticleCAS Google Scholar
Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature376, 263–267 (1995). ArticleCAS Google Scholar
Tsai, R.Y. & Reed, R.R. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J. Neurosci.17, 4159–4169 (1997). ArticleCAS Google Scholar
Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell100, 229–240 (2000). ArticleCAS Google Scholar
Garel, S., Marin, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development126, 5285–5294 (1999). CAS Google Scholar
Prasad, B.C. et al. unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development125, 1561–1568 (1998). CAS Google Scholar
Kim, K., Colosimo, M.E., Yeung, H. & Sengupta, P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev. Biol.286, 136–148 (2005). ArticleCAS Google Scholar
de Silva, M.G. et al. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J. Med. Genet.40, 733–740 (2003). ArticleCAS Google Scholar
Martino, D. & Giovannoni, G. Antibasal ganglia antibodies and their relevance to movement disorders. Curr. Opin. Neurol.17, 425–432 (2004). Article Google Scholar
Church, A.J. et al. Anti-basal ganglia antibodies in acute and persistent Sydenham's chorea. Neurology59, 227–231 (2002). ArticleCAS Google Scholar
Kirvan, C.A., Swedo, S.E., Heuser, J.S. & Cunningham, M.W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med.9, 914–920 (2003). ArticleCAS Google Scholar
Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques34, 374–378 (2003). ArticleCAS Google Scholar
Tecott, L.H., Rubenstein, J.L., Paxinos, G., Evans, C.J., Eberwine, J.H. & Valentino, K.L. Developmental expression of proenkephalin mRNA and peptides in rat striatum. Brain Res. Dev. Brain Res.49, 75–86 (1989). ArticleCAS Google Scholar