A thermosensory pathway that controls body temperature (original) (raw)
Hammel, H.T. Regulation of internal body temperature. Annu. Rev. Physiol.30, 641–710 (1968). ArticleCAS Google Scholar
Hensel, H. Thermoreception and temperature regulation. Monogr. Physiol. Soc.38, 1–321 (1981). CASPubMed Google Scholar
Boulant, J.A. & Gonzalez, R.R. The effect of skin temperature on the hypothalamic control of heat loss and heat production. Brain Res.120, 367–372 (1977). ArticleCAS Google Scholar
Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci.85, 18–25 (2000). ArticleCAS Google Scholar
Nakamura, K. & Morrison, S.F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol.292, R127–R136 (2007). ArticleCAS Google Scholar
Romanovsky, A.A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol.292, R37–R46 (2007). ArticleCAS Google Scholar
Huckaba, C.E., Downey, J.A. & Darling, R.C. A feedback-feedforward mechanism describing the interaction of central and peripheral signals in human thermoregulation. Int. J. Biometeorol.15, 141–145 (1971). ArticleCAS Google Scholar
Savage, M.V. & Brengelmann, G.L. Control of skin blood flow in the neutral zone of human body temperature regulation. J. Appl. Physiol.80, 1249–1257 (1996). ArticleCAS Google Scholar
Craig, A.D., Bushnell, M.C., Zhang, E-T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature372, 770–773 (1994). ArticleCAS Google Scholar
Craig, A.D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci.3, 655–666 (2002). ArticleCAS Google Scholar
Sagar, S.M., Sharp, F.R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science240, 1328–1331 (1988). ArticleCAS Google Scholar
Saper, C.B. & Loewy, A.D. Efferent connections of the parabrachial nucleus in the rat. Brain Res.197, 291–317 (1980). ArticleCAS Google Scholar
Fulwiler, C.E. & Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Rev.7, 229–259 (1984). Article Google Scholar
Krukoff, T.L., Harris, K.H. & Jhamandas, J.H. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull.30, 163–172 (1993). ArticleCAS Google Scholar
Bester, H., Besson, J-M. & Bernard, J-F. Organization of efferent projections from the parabrachial area to the hypothalamus: a _Phaseolus vulgaris_-leucoagglutinin study in the rat. J. Comp. Neurol.383, 245–281 (1997). ArticleCAS Google Scholar
Lumpkin, E.A. & Caterina, M.J. Mechanisms of sensory transduction in the skin. Nature445, 858–865 (2007). ArticleCAS Google Scholar
Cechetto, D.F., Standaert, D.G. & Saper, C.B. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol.240, 153–160 (1985). ArticleCAS Google Scholar
Bernard, J.-F., Dallel, R., Raboisson, P., Villanueva, L. & Le Bars, D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J. Comp. Neurol.353, 480–505 (1995). ArticleCAS Google Scholar
Feil, K. & Herbert, H. Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J. Comp. Neurol.353, 506–528 (1995). ArticleCAS Google Scholar
Bester, H., Menendez, L., Besson, J.M. & Bernard, J.F. Spino(trigemino)parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol.73, 568–585 (1995). ArticleCAS Google Scholar
Nakamura, K. et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci.22, 4600–4610 (2002). ArticleCAS Google Scholar
Madden, C.J. & Morrison, S.F. Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin-evoked thermogenesis. Neuroscience122, 5–15 (2003). ArticleCAS Google Scholar
Zaretskaia, M.V., Zaretsky, D.V. & DiMicco, J.A. Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci. Lett.340, 1–4 (2003). ArticleCAS Google Scholar
Madden, C.J. & Morrison, S.F. Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol.286, R320–R325 (2004). ArticleCAS Google Scholar
Nakamura, K. Fever-inducing sympathetic neural pathways. J. Therm. Biol.29, 339–344 (2004). ArticleCAS Google Scholar
Nakamura, K., Matsumura, K., Kobayashi, S. & Kaneko, T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci. Res.51, 1–8 (2005). Article Google Scholar
Nakamura, Y. et al. Direct pyrogenic input from prostaglandin EP3 receptor–expressing preoptic neurons to the dorsomedial hypothalamus. Eur. J. Neurosci.22, 3137–3146 (2005). Article Google Scholar
Gauriau, C. & Bernard, J.-F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J. Comp. Neurol.468, 24–56 (2004). Article Google Scholar
Zhang, X., Davidson, S. & Giesler, G.J., Jr. Thermally identified subgroups of marginal zone neurons project to distinct regions of the ventral posterior lateral nucleus in rats. J. Neurosci.26, 5215–5223 (2006). ArticleCAS Google Scholar
Kobayashi, A. & Osaka, T. Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Arch.446, 760–765 (2003). ArticleCAS Google Scholar
Hylden, J.L.K., Anton, F. & Nahin, R.L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience28, 27–37 (1989). ArticleCAS Google Scholar
Broman, J. & Ottersen, O.P. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J. Neurosci.12, 204–221 (1992). ArticleCAS Google Scholar
Blomqvist, A., Ericson, A.C., Craig, A.D. & Broman, J. Evidence for glutamate as a neurotransmitter in spinothalamic tract terminals in the posterior region of owl monkeys. Exp. Brain Res.108, 33–44 (1996). ArticleCAS Google Scholar
Bratincsák, A. & Palkovits, M. Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience135, 525–532 (2005). Article Google Scholar
Chen, X.-M., Hosono, T., Yoda, T., Fukuda, Y. & Kanosue, K. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J. Physiol. (Lond.)512, 883–892 (1998). ArticleCAS Google Scholar
Nakamura, K. et al. Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus. Neurosci. Lett.260, 117–120 (1999). ArticleCAS Google Scholar
Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci.10, 1131–1133 (2007). ArticleCAS Google Scholar
Bester, H., Chapman, V., Besson, J.-M. & Bernard, J.-F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol.83, 2239–2259 (2000). ArticleCAS Google Scholar
Craig, A.D. & Dostrovsky, J.O. Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J. Neurophysiol.86, 856–870 (2001). ArticleCAS Google Scholar
Boulant, J.A. & Hardy, J.D. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. (Lond.)240, 639–660 (1974). ArticleCAS Google Scholar
Hellon, R.F., Hensel, H. & Schäfer, K. Thermal receptors in the scrotum of the rat. J. Physiol. (Lond.)248, 349–357 (1975). ArticleCAS Google Scholar
Saper, C.B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci.25, 433–469 (2002). ArticleCAS Google Scholar
Hori, T., Nakashima, T., Koga, H., Kiyohara, T. & Inoue, T. Convergence of thermal, osmotic and cardiovascular signals on preoptic and anterior hypothalamic neurons in the rat. Brain Res. Bull.20, 879–885 (1988). ArticleCAS Google Scholar
Morrison, S.F. Central pathways controlling brown adipose tissue thermogenesis. News Physiol. Sci.19, 67–74 (2004). Google Scholar
Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci.24, 5370–5380 (2004). ArticleCAS Google Scholar
Nakamura, K. et al. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol.421, 543–569 (2000). ArticleCAS Google Scholar
Nakamura, K., Li, Y.-Q., Kaneko, T., Katoh, H. & Negishi, M. Prostaglandin EP3 receptor protein in serotonin and catecholamine cell groups: a double immunofluorescence study in the rat brain. Neuroscience103, 763–775 (2001). ArticleCAS Google Scholar
Morrison, S.F. & Cao, W.-H. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am. J. Physiol. Regul. Integr. Comp. Physiol.279, R1763–R1775 (2000). ArticleCAS Google Scholar
Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods65, 113–136 (1996). ArticleCAS Google Scholar