Mechanisms of sensory transduction in the skin (original) (raw)
Gardner, E. P., Martin, J. H. & Jessell, T. M. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) 430–449 (Oxford Univ. Press, New York, 2000). Google Scholar
Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci.24, 487–517 (2001). ArticleCASPubMed Google Scholar
Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol.68, 619–647 (2006). ArticleCASPubMed Google Scholar
Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci.29, 135–161 (2006). ArticleCASPubMed Google Scholar
Lee, H. & Caterina, M. J. TRPV channels as thermosensory receptors in epithelial cells. Pflügers Arch.451, 160–167 (2005). ArticleCASPubMed Google Scholar
Zimmermann, K. et al. The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience135, 1277–1284 (2005). ArticleCASPubMed Google Scholar
Szallasi, A., Cruz, F. & Geppetti, P. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol. Med.12, 545–554 (2006). ArticleCASPubMed Google Scholar
Togashi, K. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J.25, 1804–1815 (2006). ArticleCASPubMedPubMed Central Google Scholar
Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell108, 705–715 (2002). ArticleCASPubMed Google Scholar
McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature416, 52–58 (2002). ArticleADSCASPubMed Google Scholar
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003). ArticleCASPubMed Google Scholar
Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004). ArticleADSCASPubMed Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004). ArticleCASPubMed Google Scholar
Reid, G. ThermoTRP channels and cold sensing: what are they really up to? Pflügers Arch.451, 250–263 (2005). ArticleCASPubMed Google Scholar
Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron50, 277–289 (2006). ArticleCASPubMed Google Scholar
Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest.115, 2393–2401 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci.25, 4052–4061 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006). ArticleCASPubMed Google Scholar
Viana, F., de la Pena, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neurosci.5, 254–260 (2002). ArticleCASPubMed Google Scholar
Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci.5, 900–904 (2002). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature417, 515–522 (2002). ArticleADSCASPubMed Google Scholar
LeMasurier, M. & Gillespie, P. G. Hair-cell mechanotransduction and cochlear amplification. Neuron48, 403–415 (2005). ArticleCASPubMed Google Scholar
Syntichaki, P. & Tavernarakis, N. Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol. Rev.84, 1097–1153 (2004). ArticleCASPubMed Google Scholar
Kahn-Kirby, A. H. et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell119, 889–900 (2004). ArticleCASPubMed Google Scholar
O'Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci.8, 43–50 (2005). ArticleCASPubMed Google Scholar
Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science287, 2229–2234 (2000). ArticleADSCASPubMed Google Scholar
Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature384, 170–172 (1996). ArticleADSCASPubMed Google Scholar
Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron39, 1005–1017 (2003). ArticleCASPubMed Google Scholar
Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature445, 206–209 (2007). ArticleADSCASPubMed Google Scholar
Mogil, J. S. et al. Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J. Neurosci.25, 9893–9901 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, W., Feng, Z., Sternberg, P. W. & Xu, X. Z. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature440, 684–687 (2006). ArticleADSCASPubMedPubMed Central Google Scholar
Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci.20, 5981–5988 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gopfert, M. C., Albert, J. T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by Drosophila TRP channels. Nature Neurosci.9, 999–1000 (2006). ArticlePubMedCAS Google Scholar
Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science301, 96–99 (2003). ArticleADSCASPubMed Google Scholar
Shin, J. B. et al. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc. Natl Acad. Sci. USA102, 12572–12577 (2005). ArticleADSCASPubMedPubMed Central Google Scholar
Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature432, 723–730 (2004). ArticleADSCASPubMed Google Scholar
Tracey, W. D., Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell113, 261–273 (2003). ArticleCASPubMed Google Scholar
Kahn-Kirby, A. H. & Bargmann, C. I. TRP channels in C. elegans. Annu. Rev. Physiol.68, 719–736 (2006). ArticleCASPubMed Google Scholar
Gong, Z. et al. Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci.24, 9059–9066 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature424, 81–84 (2003). ArticleADSCASPubMed Google Scholar
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell103, 525–535 (2000). ArticleCASPubMedPubMed Central Google Scholar
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol.2, 695–702 (2000). ArticleCASPubMed Google Scholar
Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA101, 396–401 (2004). ArticleADSCASPubMed Google Scholar
Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem.278, 22664–22668 (2003). ArticleCASPubMed Google Scholar
Alessandri-Haber, N., Joseph, E., Dina, O. A., Liedtke, W. & Levine, J. D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain118, 70–79 (2005). ArticleCASPubMed Google Scholar
Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci.5, 856–860 (2002). ArticleCASPubMed Google Scholar
Sharif Naeini, R., Witty, M. F., Seguela, P. & Bourque, C. W. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neurosci.9, 93–98 (2006). ArticlePubMedCAS Google Scholar
Muraki, K. et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res.93, 829–838 (2003). ArticleCASPubMed Google Scholar
Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol.7, 179–185 (2005). ArticleCASPubMed Google Scholar
Roper, S. D. Signaling in the chemosensory systems: cell communication in taste buds. CellMol. Life Sci.63, 1494–1500 (2006). ArticleCAS Google Scholar
Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron45, 17–25 (2005). ArticleCASPubMed Google Scholar
Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron20, 629–632 (1998). ArticleCASPubMed Google Scholar
Hilliges, M., Wang, L. & Johansson, O. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J. Invest. Dermatol.104, 134–137 (1995). ArticleCASPubMed Google Scholar
Chateau, Y. & Misery, L. Connections between nerve endings and epidermal cells: are they synapses? Exp. Dermatol.13, 2–4 (2004). ArticlePubMed Google Scholar
Khodorova, A., Fareed, M. U., Gokin, A., Strichartz, G. R. & Davar, G. Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J. Neurosci.22, 7788–7796 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci.9, 628–635 (2006). ArticleCASPubMed Google Scholar
Koizumi, S. et al. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem. J.380, 329–338 (2004). ArticleCASPubMedPubMed Central Google Scholar
Khodorova, A. et al. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nature Med.9, 1055–1061 (2003). ArticleCASPubMed Google Scholar
Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science307, 1468–1472 (2005). ArticleADSCASPubMed Google Scholar
Biro, T. et al. Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice. J. Invest. Dermatol.126, 1909–1912 (2006). ArticleCASPubMed Google Scholar
Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol.126, 2664–2672 (2006). ArticleCASPubMed Google Scholar
Halata, Z., Grim, M. & Bauman, K. I. Friedrich Sigmund Merkel and his 'Merkel cell', morphology, development, and physiology: review and new results. Anat. Rec.271A, 225–239 (2003). Article Google Scholar
Sekerkova, G. et al. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J. Neurosci.24, 5445–5456 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development127, 1039–1048 (2000). ArticleCASPubMed Google Scholar
Wallis, D. et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development130, 221–232 (2003). ArticleCASPubMed Google Scholar
Cahusac, P. M. & Senok, S. S. Metabotropic glutamate receptor antagonists selectively enhance responses of slowly adapting type I mechanoreceptors. Synapse59, 235–242 (2006). ArticleCASPubMed Google Scholar
Cahusac, P. M., Senok, S. S., Hitchcock, I. S., Genever, P. G. & Baumann, K. I. Are unconventional NMDA receptors involved in slowly adapting type I mechanoreceptor responses? Neuroscience133, 763–773 (2005). ArticleCASPubMed Google Scholar
Fagan, B. M. & Cahusac, P. M. Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport12, 341–347 (2001). ArticleCASPubMed Google Scholar
Tachibana, T. & Nawa, T. Immunohistochemical reactions of receptors to met-enkephalin, VIP, substance P, and CGRP located on Merkel cells in the rat sinus hair follicle. Arch. Histol. Cytol.68, 383–391 (2005). ArticleCASPubMed Google Scholar
Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to 'hot' chili peppers. Cell108, 421–430 (2002). ArticleCASPubMed Google Scholar
Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neurosci.9, 493–500 (2006). ArticleCASPubMed Google Scholar
Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature430, 748–54 (2004). ArticleADSCASPubMed Google Scholar
Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature441, 179–185 (2006). ArticleADSCASPubMed Google Scholar