A transient receptor potential channel expressed in taste receptor cells (original) (raw)
Gilbertson, T.A., Damak, S. & Margolskee, R.F. The molecular physiology of taste transduction. Curr. Opin. Neurobiol.10, 519–527 (2000). ArticleCAS Google Scholar
Lindemann, B. Receptors and transduction in taste. Nature413, 219–225 (2001). ArticleCAS Google Scholar
Adler, E. et al. A novel family of mammalian taste receptors. Cell100, 693–702 (2000). ArticleCAS Google Scholar
Matsunami, H., Montmayeur, J.P. & Buck, L.B. A family of candidate taste receptors in human and mouse. Nature404, 601–604 (2000). ArticleCAS Google Scholar
Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell100, 703–711 (2000). ArticleCAS Google Scholar
Bachmanov, A.A. et al. Positional cloning of the mouse saccharin preference (Sac) locus. Chem. Senses26, 925–933 (2001). ArticleCAS Google Scholar
Nelson, G. et al. Mammalian sweet taste receptors. Cell106, 381–390 (2001). ArticleCAS Google Scholar
Sainz, E., Korley, J.N., Battey, J.F. & Sullivan, S.L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem.77, 896–903 (2001). ArticleCAS Google Scholar
Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus. Sac. Nat. Genet.28, 58–63 (2001). CASPubMed Google Scholar
Montmayeur, J.P., Liberles, S.D., Matsunami, H. & Buck, L.B. A candidate taste receptor gene near a sweet taste locus. Nat. Neurosci.4, 492–498 (2001). ArticleCAS Google Scholar
Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y. & Hino, A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun.283, 236–242 (2001). ArticleCAS Google Scholar
Chaudhari, N., Landin, A.M. & Roper, S.D. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci.3, 113–119 (2000). ArticleCAS Google Scholar
Nelson, G. et al. An amino-acid taste receptor. Nature416, 199–202 (2002). ArticleCAS Google Scholar
McLaughlin, S.K., McKinnon, P.J. & Margolskee, R.F. Gustducin is a taste-cell–specific G protein closely related to the transducins. Nature357, 563–569 (1992). ArticleCAS Google Scholar
Wong, G.T., Gannon, K.S. & Margolskee, R.F. Transduction of bitter and sweet taste by gustducin. Nature381, 796–800 (1996). ArticleCAS Google Scholar
Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci.2, 1055–1062 (1999). ArticleCAS Google Scholar
Rossler, P. et al. G protein βγ complexes in circumvallate taste cells involved in bitter transduction. Chem. Senses.25, 413–421 (2000). ArticleCAS Google Scholar
Rossler, P., Kroner, C., Freitag, J., Noe, J. & Breer, H. Identification of a phospholipase C β subtype in rat taste cells. Eur. J. Cell. Biol.77, 253–261 (1998). ArticleCAS Google Scholar
Clapp, T.R., Stone, L.M., Margolskee, R.F. & Kinnamon, S.C. Immunocytochemical evidence for coexpression of Type III IP3 receptor with signaling components of bitter taste transduction. B. M. C. Neurosci.2, 6 (2001). CAS Google Scholar
Miyoshi, M.A., Abe, K. & Emori, Y. IP3 receptor type 3 and PLCβ2 are coexpressed with taste receptors T1R and T2R in rat taste bud cells. Chem. Senses26, 259–265 (2001). ArticleCAS Google Scholar
Misaka, T. et al. Taste buds have a cyclic nucleotide-activated channel, CNGgust. J. Biol. Chem.272, 22623–22629 (1997). ArticleCAS Google Scholar
Bernhardt, S.J., Naim, M., Zehavi, U. & Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol.490, 325–336 (1996). ArticleCAS Google Scholar
Ogura, T., Mackay-Sim, A. & Kinnamon, S.C. Bitter taste transduction of denatonium in the mudpuppy Necturus maculosus. J. Neurosci.17, 3580–3587 (1997). ArticleCAS Google Scholar
Ming, D., Ruiz-Avila, L. & Margolskee, R.F. Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc. Natl. Acad. Sci. USA95, 8933–8938 (1998). ArticleCAS Google Scholar
Putney, J.W. Jr. & McKay, R.R. Capacitative calcium entry channels. Bioessays21, 38–46 (1999). Article Google Scholar
Clapham, D.E., Runnels, L.W. & Strubing, C. The trp ion channel family. Nat. Rev. Neurosci.2, 387–396 (2001). ArticleCAS Google Scholar
Wong, G.T., Ruiz-Avila, L. & Margolskee, R.F. Directing gene expression to gustducin-positive taste receptor cells. J. Neurosci.19, 5802–5809 (1999). ArticleCAS Google Scholar
Yatsuki, H. et al. Sequence-based structural features between Kvlqt1 and Tapa1 on mouse chromosome 7F4/F5 corresponding to the Beckwith-Wiedemann syndrome region on human 11p15.5: long-stretches of unusually well conserved intronic sequences of kvlqt1 between mouse and human. DNA Res.7, 195–206 (2000). ArticleCAS Google Scholar
Enklaar, T. et al. Mtr1, a novel biallelically expressed gene in the center of the mouse distal chromosome 7 imprinting cluster, is a member of the Trp gene family. Genomics67, 179–187 (2000). ArticleCAS Google Scholar
Prawitt, D. et al. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet.9, 203–216 (2000). ArticleCAS Google Scholar
Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell.9, 229–231 (2002). ArticleCAS Google Scholar
Paulsen, M. et al. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum. Mol. Genet.9, 1829–1841 (2000). ArticleCAS Google Scholar
Gillo, B. et al. Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc. Natl. Acad. Sci. USA93, 14146–14151 (1996). ArticleCAS Google Scholar
Lytton, J., Westlin, M. & Hanley, M.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem.266, 17067–17071 (1991). CASPubMed Google Scholar
Bobanovic, L.K. et al. Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus. Biochem. J.340, 593–599 (1999). ArticleCAS Google Scholar
Halaszovich, C.R., Zitt, C., Jungling, E. & Luckhoff, A. Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J. Biol. Chem.275, 37423–37428 (2000). ArticleCAS Google Scholar
Lomax, R.B., Herrero, C.J., Garcia-Palomero, E., Garcia, A.G. & Montiel, C. Capacitative Ca2+ entry into Xenopus oocytes is sensitive to omega-conotoxins GVIA, MVIIA and MVIIC. Cell Calcium23, 229–239 (1998). ArticleCAS Google Scholar
Ogura, T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol.87, 2643–2649 (2002). ArticleCAS Google Scholar
Ogura, T., Margolskee, R.F. & Kinnamon, S.C. Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J. Neurophysiol.87, 3152–3155 (2002). ArticleCAS Google Scholar
Randriamampita, C. & Tsien, R.Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature364, 809–814 (1993). ArticleCAS Google Scholar
Birnbaumer, L. et al. Mechanism of capacitative Ca2+ entry (CCE): interaction between IP3 receptor and TRP links the internal calcium storage compartment to plasma membrane CCE channels. Recent. Prog. Horm. Res.55, 127–161 (2000). CASPubMed Google Scholar
Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature397, 259–263 (1999). ArticleCAS Google Scholar
Yan, W. et al. Bitter taste transduced by PLC-β(2)-dependent rise in IP3 and alpha-gustducin-dependent fall in cyclic nucleotides. Am. J. Physiol. Cell. Physiol.280, C742–C751 (2001). ArticleCAS Google Scholar
Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA99, 7461–7466 (2002). ArticleCAS Google Scholar
Hardie, R.C. & Minke, B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron8, 643–651 (1992). ArticleCAS Google Scholar
Liman, E.R., Corey, D.P. & Dulac, C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl. Acad. Sci. USA96, 5791–5796 (1999). ArticleCAS Google Scholar
Stortkuhl, K.F., Hovemann, B.T. & Carlson, J.R. Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J. Neurosci.19, 4839–4846 (1999). ArticleCAS Google Scholar
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell103, 525–535 (2000). ArticleCAS Google Scholar
Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288, 306–313 (2000). ArticleCAS Google Scholar
Chan, K.W. et al. A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J. Gen. Physiol.107, 381–397 (1996). ArticleCAS Google Scholar