Fourier transform spectroscopy with a laser frequency comb (original) (raw)

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
    Article ADS Google Scholar
  2. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).
    Article ADS Google Scholar
  3. Schliesser, A., Brehm, M., Keilmann, F. and van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).
    Article ADS Google Scholar
  4. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).
    Article ADS Google Scholar
  5. Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).
    Article ADS Google Scholar
  6. Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).
    Article ADS Google Scholar
  7. Giaccari, P., Deschênes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).
    Article ADS Google Scholar
  8. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).
    Article ADS Google Scholar
  9. Kraetschmer, T., Walewski, J. W. & Sanders, S. T. Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity. Opt. Lett. 31, 3179–3181 (2006).
    Article ADS Google Scholar
  10. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
    Article ADS Google Scholar
  11. Thorpe, M. J., Balslev, C. D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).
    Article ADS Google Scholar
  12. Gohle, C., Stein, B., Schliesser, A., Udem, T. & Hänsch, T. W. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).
    Article ADS Google Scholar
  13. Thorpe, M. J., Hudson, D. D., Moll, K. D., Lasri, J. & Ye, J. Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm. Opt. Lett. 32, 307–309 (2007).
    Article ADS Google Scholar
  14. Gherman, T. et al. High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar* (3P2) atom and N2+ ion densities. J. Phys. D 37, 2408–2415 (2004).
    Article ADS Google Scholar
  15. Crosson, E. R. et al. Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70, 4–10 (1999).
    Article ADS Google Scholar
  16. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).
    Article Google Scholar
  17. Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).
    Article ADS Google Scholar
  18. Bjorklund, G. C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15–17 (1980).
    Article ADS Google Scholar
  19. Guelachvili, G. High-accuracy Doppler-limited 106 samples Fourier transform spectroscopy. Appl. Opt. 17, 1322–1326 (1978).
    Article ADS Google Scholar
  20. Picqué, N. & Guelachvili, G. High-information time-resolved Fourier transform spectroscopy at work. Appl. Opt. 39, 3984–3990 (2000).
    Article ADS Google Scholar
  21. Nakagawa, K., de Labachelerie, M., Awaji, Y. & Kourogi, M. Accurate optical frequency atlas of the 1.5-μm bands of acetylene. J. Opt. Soc. Am. B. 13, 2708–2714 (1996).
    Article ADS Google Scholar
  22. Tillman, K. A., Maier, R. R. J., Reid, D. T. & McNaghten, E. D. Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate. J. Opt. A. 7, S408–S414 (2005).
    Article ADS Google Scholar
  23. Mandon, J., Guelachvili, G., Picqué, N., Druon, F. & Georges, P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 32, 1677–1679 (2007).
    Article ADS Google Scholar
  24. Sorokin, E., Sorokina, I. T., Mandon, J., Guelachvili, G. & Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser. Opt. Express 15, 16540–16545 (2007).
    Article ADS Google Scholar
  25. Miller, C. E. & Brown, L. R. Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions. J. Mol. Spectrosc. 228, 329–354 (2004).
    Article ADS Google Scholar
  26. Mandon, J. et al. Enhancement of molecular dispersion spectral signatures in mode-locked lasers. WEoB.4, 3rd EPS-QEOD Europhoton Conference, Paris, France (2008).
  27. Guelachvili, G. Near infrared wide-band spectroscopy with 27-MHz resolution. Appl. Opt. 16, 2097–2101 (1977).
    Article ADS Google Scholar

Download references