Fourier transform spectroscopy with a laser frequency comb (original) (raw)
References
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature416, 233–237 (2002). ArticleADS Google Scholar
Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett.29, 1542–1544 (2004). ArticleADS Google Scholar
Schliesser, A., Brehm, M., Keilmann, F. and van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express13, 9029–9038 (2005). ArticleADS Google Scholar
Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett.100, 013902 (2008). ArticleADS Google Scholar
Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett.87, 061101 (2005). ArticleADS Google Scholar
Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett.88, 241104 (2006). ArticleADS Google Scholar
Giaccari, P., Deschênes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express16, 4347–4365 (2008). ArticleADS Google Scholar
Schiller, S. Spectrometry with frequency combs. Opt. Lett.27, 766–768 (2002). ArticleADS Google Scholar
Kraetschmer, T., Walewski, J. W. & Sanders, S. T. Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity. Opt. Lett.31, 3179–3181 (2006). ArticleADS Google Scholar
Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science311, 1595–1599 (2006). ArticleADS Google Scholar
Thorpe, M. J., Balslev, C. D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express16, 2387–2397 (2008). ArticleADS Google Scholar
Gohle, C., Stein, B., Schliesser, A., Udem, T. & Hänsch, T. W. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett.99, 263902 (2007). ArticleADS Google Scholar
Thorpe, M. J., Hudson, D. D., Moll, K. D., Lasri, J. & Ye, J. Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm. Opt. Lett.32, 307–309 (2007). ArticleADS Google Scholar
Gherman, T. et al. High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar* (3P2) atom and N2+ ion densities. J. Phys. D37, 2408–2415 (2004). ArticleADS Google Scholar
Crosson, E. R. et al. Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum.70, 4–10 (1999). ArticleADS Google Scholar
Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature445, 627–630 (2007). Article Google Scholar
Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B91, 397–414 (2008). ArticleADS Google Scholar
Bjorklund, G. C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett.5, 15–17 (1980). ArticleADS Google Scholar
Guelachvili, G. High-accuracy Doppler-limited 106 samples Fourier transform spectroscopy. Appl. Opt.17, 1322–1326 (1978). ArticleADS Google Scholar
Picqué, N. & Guelachvili, G. High-information time-resolved Fourier transform spectroscopy at work. Appl. Opt.39, 3984–3990 (2000). ArticleADS Google Scholar
Nakagawa, K., de Labachelerie, M., Awaji, Y. & Kourogi, M. Accurate optical frequency atlas of the 1.5-μm bands of acetylene. J. Opt. Soc. Am. B.13, 2708–2714 (1996). ArticleADS Google Scholar
Tillman, K. A., Maier, R. R. J., Reid, D. T. & McNaghten, E. D. Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate. J. Opt. A.7, S408–S414 (2005). ArticleADS Google Scholar
Mandon, J., Guelachvili, G., Picqué, N., Druon, F. & Georges, P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett.32, 1677–1679 (2007). ArticleADS Google Scholar
Sorokin, E., Sorokina, I. T., Mandon, J., Guelachvili, G. & Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser. Opt. Express15, 16540–16545 (2007). ArticleADS Google Scholar
Miller, C. E. & Brown, L. R. Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions. J. Mol. Spectrosc.228, 329–354 (2004). ArticleADS Google Scholar
Mandon, J. et al. Enhancement of molecular dispersion spectral signatures in mode-locked lasers. WEoB.4, 3rd EPS-QEOD Europhoton Conference, Paris, France (2008).
Guelachvili, G. Near infrared wide-band spectroscopy with 27-MHz resolution. Appl. Opt.16, 2097–2101 (1977). ArticleADS Google Scholar