Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse (original) (raw)
Ahlers KE, Karacay B, Fuller L, Bonthius DJ, Dailey ME (2015). Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia63: 1694–1713. PubMedPubMed Central Google Scholar
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci10: 1538–1543. CASPubMed Google Scholar
Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010). Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci30: 8285–8295. CASPubMedPubMed Central Google Scholar
Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ et al (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature486: 410–414. CASPubMedPubMed Central Google Scholar
Alliot F, Godin I, Pessac B (1999). Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res117: 145–152. CASPubMed Google Scholar
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014). Gliotransmitters travel in time and space. Neuron81: 728–739. CASPubMedPubMed Central Google Scholar
Armstrong V, Reichel CM, Doti JF, Crawford CA, McDougall SA (2004). Repeated amphetamine treatment causes a persistent elevation of glial fibrillary acidic protein in the caudate-putamen. Eur J Pharmacol488: 111–115. CASPubMed Google Scholar
Bachtell R, Hutchinson MR, Wang X, Rice KC, Maier SF, Watkins LR (2015). Targeting the toll of drug abuse: the translational potential of Toll-like receptor 4. CNS Neurol Disord Drug Targets14: 692–699. CASPubMedPubMed Central Google Scholar
Bajo M, Herman MA, Varodayan FP, Oleata CS, Madamba SG, Harris RA et al (2015). Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala. Brain Behav Immun45: 189–197. CASPubMed Google Scholar
Bajo M, Madamba SG, Roberto M, Blednov YA, Sagi VN, Roberts E et al (2014). Innate immune factors modulate ethanol interaction with GABAergic transmission in mouse central amygdala. Brain Behav Immun40: 191–202. CASPubMedPubMed Central Google Scholar
Banker GA (1980). Trophic interactions between astroglial cells and hippocampal neurons in culture. Science209: 809–810. CASPubMed Google Scholar
Banks WA, Robinson SM (2010). Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun24: 102–109. CASPubMed Google Scholar
Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2015). Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol7: a020362. PubMed Central Google Scholar
Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M et al (2002). Control of synaptic strength by glial TNFalpha. Science295: 2282–2285. CASPubMed Google Scholar
Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA et al (2006). Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA103: 16021–16026. CASPubMedPubMed Central Google Scholar
Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L et al (2015). Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell162: 622–634. CASPubMedPubMed Central Google Scholar
Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H et al (2013). Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature497: 369–373. CASPubMedPubMed Central Google Scholar
Bialas AR, Stevens B (2013). TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci16: 1773–1782. CASPubMedPubMed Central Google Scholar
Biber K, Neumann H, Inoue K, Boddeke HWGM (2007). Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci30: 596–602. CASPubMed Google Scholar
Bilbo SD, Schwarz JM (2012). The immune system and developmental programming of brain and behavior. Front Neuroendocrinol33: 267–286. CASPubMedPubMed Central Google Scholar
Bilbo SD, Smith SH, Schwarz JM (2012). A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol7: 24–41. PubMed Google Scholar
Björklund A, Dunnett SB (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci30: 194–202. PubMed Google Scholar
Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA (2012). Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol17: 108–120. CASPubMed Google Scholar
Blinzinger K, Kreutzberg G (1968). Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat85: 145–157. CASPubMed Google Scholar
Block ML, Zecca L, Hong JS (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci8: 57–69. CASPubMed Google Scholar
Boschen KE, Ruggiero MJ, Klintsova AY (2016). Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus. Neuroscience324: 355–366. CASPubMed Google Scholar
Boyadjieva NI, Sarkar DK (2010). Role of microglia in ethanol's apoptotic action on hypothalamic neuronal cells in primary cultures. Alcohol Clin Exp Res34: 1835–1842. CASPubMedPubMed Central Google Scholar
Boyadjieva NI, Sarkar DK (2013). Microglia play a role in ethanol-induced oxidative stress and apoptosis in developing hypothalamic neurons. Alcohol Clin Exp Res37: 252–262. CASPubMed Google Scholar
Brown GC, Neher JJ (2014). Microglial phagocytosis of live neurons. Nat Rev Neurosci15: 209–216. CASPubMed Google Scholar
Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci22: 183–192. CASPubMedPubMed Central Google Scholar
Calcaterra S, Glanz J, Binswanger IA (2013). National trends in pharmaceutical opioid related overdose deaths compared to other substance related overdose deaths: 1999-2009. Drug Alcohol Depend131: 263–270. PubMedPubMed Central Google Scholar
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci9: 917–924. CASPubMed Google Scholar
Case A, Deaton A (2015). Rising morbidity and mortality in midlife among white non-Hispanic Americans in the 21st century. Proc Natl Acad Sci USA112: 15078–15083. CASPubMedPubMed Central Google Scholar
Cearley CN, Blindheim K, Sorg BA, Krueger JM, Churchill L (2011). Acute cocaine increases interleukin-1beta mRNA and immunoreactive cells in the cortex and nucleus accumbens. Neurochem Res36: 686–692. CASPubMedPubMed Central Google Scholar
Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B et al (2015). IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron85: 519–533. CASPubMedPubMed Central Google Scholar
Chao CC, Gekker G, Hu S, Sheng WS, Shark KB, Bu DF et al (1996). Kappa opioid receptors in human microglia downregulate human immunodeficiency virus 1 expression. Proc Natl Acad Sci USA93: 8051–8056. CASPubMedPubMed Central Google Scholar
Chao CC, Hu S, Shark KB, Sheng WS, Gekker G, Peterson PK (1997). Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther281: 998–1004. CASPubMed Google Scholar
Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X et al (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci32: 11706–11715. CASPubMedPubMed Central Google Scholar
Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A et al (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell120: 421–433. CASPubMed Google Scholar
Chung WS, Allen NJ, Eroglu C (2015a). Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol7: a020370. PubMedPubMed Central Google Scholar
Chung WS, Welsh CA, Barres BA, Stevens B (2015b). Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci18: 1539–1545. CASPubMedPubMed Central Google Scholar
Clarke LE, Barres BA (2013). Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci14: 311–321. CASPubMedPubMed Central Google Scholar
Coller JK, Hutchinson MR (2012). Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther134: 219–245. CASPubMed Google Scholar
Colton CA, Snell-Callanan J, Chernyshev ON (1998). Ethanol induced changes in superoxide anion and nitric oxide in cultured microglia. Alcohol Clin Exp Res22: 710–716. CASPubMed Google Scholar
Corrigan F, Wu Y, Tuke J, Coller JK, Rice KC, Diener KR et al (2015). Alcohol-induced sedation and synergistic interactions between alcohol and morphine: a key mechanistic role for Toll-like receptors and MyD88-dependent signaling. Brain Behav Immun45: 245–252. CASPubMed Google Scholar
Corty MM, Freeman MR (2013). Architects in neural circuit design: glia control neuron numbers and connectivity. J Cell Biol203: 395–405. CASPubMedPubMed Central Google Scholar
Costa BM, Yao H, Yang L, Buch S (2013). Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death. J Neuroimmune Pharmacol8: 705–714. PubMedPubMed Central Google Scholar
Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP (2015). Neuroimmune function and the consequences of alcohol exposure. Alcohol Res37: 331–351. PubMedPubMed Central Google Scholar
Crews FT, Vetreno RP (2016). Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl)233: 1543–1557. CAS Google Scholar
Crow TJ (1972). Catecholamine-containing neurones and electrical self-stimulation. 1. A review of some data. Psychol Med2: 414–421. CASPubMed Google Scholar
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M (2013). Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA110: 11499–11504. CASPubMedPubMed Central Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci8: 752–758. CASPubMed Google Scholar
De Strooper B, Karran E (2016). The cellular phase of Alzheimer's disease. Cell164: 603–615. CASPubMed Google Scholar
de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991). Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med174: 1209–1220. CASPubMed Google Scholar
Degenhardt L, Whiteford HA, Ferrari AJ, Baxter AJ, Charlson FJ, Hall WD et al (2013). Global burden of disease attributable to illicit drug use and dependence: findings from the Global Burden of Disease Study 2010. Lancet382: 1564–1574. PubMed Google Scholar
del Río-Hortega P (1932). Microglia. In: Penfield W (ed) Cytology and Cellular Pathology of the Nervous System. Paul B. Hoeber: New York, NY, Vol 2 pp 482–534. Google Scholar
Dengler EC, Alberti LA, Bowman BN, Kerwin AA, Wilkerson JL, Moezzi DR et al (2014). Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain. J Neuroinflammation11: 92. PubMedPubMed Central Google Scholar
Deroche-Gamonet V, Belin D, Piazza PV (2004). Evidence for addiction-like behavior in the rat. Science305: 1014–1017. CASPubMed Google Scholar
Di Chiara G, Imperato A (1988). Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther244: 1067–1080. CASPubMed Google Scholar
Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007). Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci27: 11354–11365. CASPubMedPubMed Central Google Scholar
Eroglu C, Allen NJ, Susman MW, O'Rourke NA, Park CY, Özkan E et al (2009). Gabapentin receptor _α_2_δ_-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell139: 380–392. CASPubMedPubMed Central Google Scholar
Fernando ABP, Robbins TW (2011). Animal models of neuropsychiatric disorders. Annu Rev Clin Psychol7: 39–61. CASPubMed Google Scholar
Fields RD, Woo DH, Basser PJ (2015). Glial regulation of the neuronal connectome through local and long-distant communication. Neuron86: 374–386. CASPubMedPubMed Central Google Scholar
Franke H (1995). Influence of chronic alcohol treatment on the GFAP-immunoreactivity in astrocytes of the hippocampus in rats. Acta Histochem97: 263–271. CASPubMed Google Scholar
Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014). Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol14: 546–558. CASPubMed Google Scholar
Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010). Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol10: 453–460. CASPubMedPubMed Central Google Scholar
Gibson LC, Hastings SF, McPhee I, Clayton RA, Darroch CE, Mackenzie A et al (2006). The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol538: 39–42. CASPubMed Google Scholar
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science330: 841–845. CASPubMedPubMed Central Google Scholar
Ginhoux F, Jung S (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol14: 392–404. CASPubMed Google Scholar
Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK (2016). New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol17: 34–40. CASPubMed Google Scholar
Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF et al (2008). Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann N Y Acad Sci1139: 103–111. PubMed Google Scholar
González JC, Egea J, Del Carmen Godino M, Fernandez-Gomez FJ, Sánchez-Prieto J, Gandía L et al (2007). Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca(2+) signalling in hippocampal neurons. Eur J Neurosci26: 2481–2495. PubMed Google Scholar
Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP et al (2016). Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci19: 504–516. CASPubMedPubMed Central Google Scholar
Grace PM, Hutchinson MR, Maier SF, Watkins LR (2014a). Pathological pain and the neuroimmune interface. Nat Rev Immunol14: 217–231. CASPubMedPubMed Central Google Scholar
Grace PM, Ramos KM, Rodgers KM, Wang X, Hutchinson MR, Lewis MT et al (2014b). Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience280: 299–317. CASPubMed Google Scholar
Gravel M, Beland LC, Soucy G, Abdelhamid E, Rahimian R, Gravel C et al (2016). IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1. J Neurosci36: 1031–1048. CASPubMedPubMed Central Google Scholar
Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M et al (2012). Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity37: 1050–1060. CASPubMedPubMed Central Google Scholar
Guerri C, Saez R, Sancho-Tello M, Martin de Aquilera E, Renau-Piqueras J (1990). Ethanol alters astrocyte development: a study of critical periods using primary cultures. Neurochem Res15: 559–565. CASPubMed Google Scholar
Guha P, Harraz MM, Snyder SH (2016). Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci USA113: 1417–1422. CASPubMedPubMed Central Google Scholar
Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K et al (2015). Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron85: 534–548. CASPubMedPubMed Central Google Scholar
Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J et al (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun5: 5748. CASPubMed Google Scholar
Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007). Synaptic islands defined by the territory of a single astrocyte. J Neurosci27: 6473–6477. CASPubMedPubMed Central Google Scholar
Hanisch UK (2013). Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci7: 65. PubMedPubMed Central Google Scholar
Hanisch UK, Kettenmann H (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci10: 1387–1394. CASPubMed Google Scholar
Haydon PG, Blendy J, Moss SJ, Rob Jackson F (2009). Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology56 Suppl 1: 83–90. PubMed Google Scholar
He J, Crews FT (2008). Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol210: 349–358. CASPubMed Google Scholar
He L, Li H, Chen L, Miao J, Jiang Y, Zhang Y et al (2011). Toll-like receptor 9 is required for opioid-induced microglia apoptosis. PLoS One6: e18190. CASPubMedPubMed Central Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurol14: 388–405. CASPubMedPubMed Central Google Scholar
Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK et al (2013). The microglial sensome revealed by direct RNA sequencing. Nat Neurosci16: 1896–1905. CASPubMedPubMed Central Google Scholar
Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD et al (2010). Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron65: 643–656. CASPubMedPubMed Central Google Scholar
Hnasko TS, Sotak BN, Palmiter RD (2005). Morphine reward in dopamine-deficient mice. Nature438: 854–857. CASPubMed Google Scholar
Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015). Neuroimmune mechanisms of depression. Nat Neurosci18: 1386–1393. CASPubMedPubMed Central Google Scholar
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science352: 712–716. CASPubMedPubMed Central Google Scholar
Horvath RJ, DeLeo JA (2009). Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci29: 998–1005. CASPubMedPubMed Central Google Scholar
Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL et al (2009). Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun23: 240–250. CASPubMed Google Scholar
Hutchinson MR, Northcutt AL, Chao LW, Kearney JJ, Zhang Y, Berkelhammer DL et al (2008). Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun22: 1248–1256. CASPubMedPubMed Central Google Scholar
Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J et al (2012). Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci32: 11187–11200. CASPubMedPubMed Central Google Scholar
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011). Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev63: 772–810. CASPubMedPubMed Central Google Scholar
Hutchinson MR, Watkins LR (2014). Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology76 Pt B: 218–227. PubMed Google Scholar
Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX et al (2010). Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun24: 83–95. CASPubMed Google Scholar
Hyman SE, Malenka RC, Nestler EJ (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci29: 565–598. CASPubMed Google Scholar
Ivashkiv LB (2008). A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat Rev Immunol8: 816–822. CASPubMedPubMed Central Google Scholar
Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E et al (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol175: 4320–4330. CASPubMed Google Scholar
Jacobsen JH, Watkins LR, Hutchinson MR (2014). Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. Int Rev Neurobiol118: 129–163. PubMed Google Scholar
Johnson SW, North RA (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci12: 483–488. CASPubMedPubMed Central Google Scholar
Jones ME, Lebonville CL, Barrus D, Lysle DT (2015). The role of brain interleukin-1 in stress-enhanced fear learning. Neuropsychopharmacology40: 1289–1296. CASPubMedPubMed Central Google Scholar
June HL, Liu J, Warnock KT, Bell KA, Balan I, Bollino D et al (2015). CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology40: 1549–1559. CASPubMedPubMed Central Google Scholar
Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A et al (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol20: 4106–4114. CASPubMedPubMed Central Google Scholar
Juni A, Klein G, Pintar JE, Kest B (2007). Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience147: 439–444. CASPubMed Google Scholar
Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S et al (2001). Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol167: 5887–5894. CASPubMed Google Scholar
Kettenmann H, Kirchhoff F, Verkhratsky A (2013). Microglia: new roles for the synaptic stripper. Neuron77: 10–18. CASPubMed Google Scholar
Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013). Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci16: 273–280. CASPubMed Google Scholar
Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008). TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis31: 33–40. CASPubMed Google Scholar
Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G et al (2011). In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood118: e156–e167. CASPubMedPubMed Central Google Scholar
Kimpel MW, Strother WN, McClintick JN, Carr LG, Liang T, Edenberg HJ et al (2007). Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions. Alcohol41: 95–132. CASPubMedPubMed Central Google Scholar
Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ et al (2007). Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood110: 4077–4085. CASPubMedPubMed Central Google Scholar
Koob GF, Volkow ND (2010). Neurocircuitry of addiction. Neuropsychopharmacology35: 217–238. PubMed Google Scholar
Korbo L (1999). Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res23: 164–168. CASPubMed Google Scholar
Kreutzberg GW (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci19: 312–318. CASPubMed Google Scholar
Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM et al (2011). Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci USA108: E440–E449. CASPubMedPubMed Central Google Scholar
Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR (2015). The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology96: 55–69. CASPubMed Google Scholar
Lammel S, Lim BK, Malenka RC (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology76 Pt B: 351–359. PubMed Google Scholar
Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM et al (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature491: 212–217. CASPubMedPubMed Central Google Scholar
Lau LT, Yu AC (2001). Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma18: 351–359. CASPubMed Google Scholar
Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D (2004). Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nat Neurosci7: 160–169. CASPubMed Google Scholar
Lawson LJ, Perry VH, Dri P, Gordon S (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience39: 151–170. CASPubMed Google Scholar
Lee MS, Kim YJ (2007). Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem76: 447–480. CASPubMed Google Scholar
Lewis SS, Hutchinson MR, Rezvani N, Loram LC, Zhang Y, Maier SF et al (2010). Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience165: 569–583. CASPubMed Google Scholar
Li X, Jiang S, Tapping RI (2010a). Toll-like receptor signaling in cell proliferation and survival. Cytokine49: 1–9. CASPubMed Google Scholar
Li X, Newbern JM, Wu Y, Morgan-Smith M, Zhong J, Charron J et al (2012a). MEK is a key regulator of gliogenesis in the developing brain. Neuron75: 1035–1050. CASPubMedPubMed Central Google Scholar
Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012b). Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell23: 1189–1202. CASPubMed Google Scholar
Li Y, Li H, Zhang Y, Sun X, Hanley GA, LeSage G et al (2010b). Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun391: 426–430. CASPubMed Google Scholar
Liao K, Guo M, Niu F, Yang L, Callen SE, Buch S (2016). Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation13: 33. PubMedPubMed Central Google Scholar
Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E et al (2008). Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science320: 807–811. CASPubMed Google Scholar
Little KY, Ramssen E, Welchko R, Volberg V, Roland CJ, Cassin B (2009). Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res168: 173–180. CASPubMed Google Scholar
Liu J, Lewohl JM, Harris RA, Iyer VR, Dodd PR, Randall PK et al (2006). Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology31: 1574–1582. CASPubMed Google Scholar
Liu J, Yang AR, Kelly T, Puche A, Esoga C, June HL Jr et al (2011). Binge alcohol drinking is associated with GABAA _α_2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci USA108: 4465–4470. CASPubMedPubMed Central Google Scholar
Lucin KM, Wyss-Coray T (2009). Immune activation in brain aging and neurodegeneration: too much or too little? Neuron64: 110–122. CASPubMedPubMed Central Google Scholar
Luo L, O'Leary DDM (2005). Axon retraction and degeneration in development and disease. Annu Rev Neurosci28: 127–156. CASPubMed Google Scholar
Lüscher C, Malenka RC (2011). Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron69: 650–663. PubMedPubMed Central Google Scholar
Marcos M, Pastor I, González-Sarmiento R, Laso FJ (2008). Interleukin-10 gene polymorphism is associated with alcoholism but not with alcoholic liver disease. Alcohol Alcohol43: 523–528. CASPubMed Google Scholar
Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE (2016). IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun51: 258–267. CASPubMed Google Scholar
Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I et al (1996). Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature383: 819–823. CASPubMed Google Scholar
McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM et al (2011). Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun25 Suppl 1: S120–S128. PubMed Google Scholar
McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J15: 5647–5658. CASPubMedPubMed Central Google Scholar
Medvinsky A, Dzierzak E (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell86: 897–906. CASPubMed Google Scholar
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I et al (2002). Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol3: 1135–1141. CASPubMedPubMed Central Google Scholar
Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995). Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron15: 805–819. CASPubMed Google Scholar
Miguel-Hidalgo JJ (2009). The role of glial cells in drug abuse. Curr Drug Abuse Rev2: 72–82. PubMed Google Scholar
Miguel-Hidalgo JJ, Wei J, Andrew M, Overholser JC, Jurjus G, Stockmeier CA et al (2002). Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Biol Psychiatry52: 1121–1133. CASPubMedPubMed Central Google Scholar
Miller AH, Raison CL (2015). The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol16: 22–34. Google Scholar
Mitchell JM, O'Neil JP, Janabi M, Marks SM, Jagust WJ, Fields HL (2012). Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci Transl Med4: 116ra116. Google Scholar
Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA et al (2006). Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA103: 6368–6373. CASPubMedPubMed Central Google Scholar
Narendran R, Lopresti BJ, Mason NS, Deuitch L, Paris J, Himes ML et al (2014). Cocaine abuse in humans is not associated with increased microglial activation: an 18-kDa translocator protein positron emission tomography imaging study with [11C]PBR28. J Neurosci34: 9945–9950. PubMedPubMed Central Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308: 1314–1318. CASPubMed Google Scholar
Noble M, Fok-Seang J, Cohen J (1984). Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci4: 1892–1903. CASPubMedPubMed Central Google Scholar
North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C et al (2002). Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity16: 661–672. CASPubMed Google Scholar
Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran TA et al (2015). DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol Psychiatry20: 1525–1537. CASPubMedPubMed Central Google Scholar
O'Neill LA, Golenbock D, Bowie AG (2013). The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol13: 453–460. CASPubMed Google Scholar
Oades RD, Halliday GM (1987). Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res434: 117–165. CASPubMed Google Scholar
Olds J (1958). Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science127: 315–324. CASPubMed Google Scholar
Olds J, Milner P (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol47: 419–427. CASPubMed Google Scholar
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P et al (2011). Synaptic pruning by microglia is necessary for normal brain development. Science333: 1456–1458. CASPubMed Google Scholar
Pastor IJ, Laso FJ, Romero A, González-Sarmiento R (2005). Interleukin-1 gene cluster polymorphisms and alcoholism in Spanish men. Alcohol Alcohol40: 181–186. CASPubMed Google Scholar
Peri F, Nüsslein-Volhard C (2008). Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell133: 916–927. CASPubMed Google Scholar
Perry VH, Hume DA, Gordon S (1985). Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience15: 313–326. CASPubMed Google Scholar
Pfrieger FW, Barres BA (1997). Synaptic efficacy enhanced by glial cells in vitro. Science277: 1684–1687. CASPubMed Google Scholar
Pleil KE, Rinker JA, Lowery-Gionta EG, Mazzone CM, McCall NM, Kendra AM et al (2015). NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking. Nat Neurosci18: 545–552. CASPubMedPubMed Central Google Scholar
Prinz M, Priller J (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci15: 300–312. CASPubMed Google Scholar
Qin L, Crews FT (2012). NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation9: 5. CASPubMedPubMed Central Google Scholar
Ramón y, Cajal S (1906). The structure and connexions of neurons. Nobel Lectures, Physiology or Medicine 1901-1921. Elsevier: Amsterdam. pp 220–253. Google Scholar
Ransohoff RM, Cardona AE (2010). The myeloid cells of the central nervous system parenchyma. Nature468: 253–262. CASPubMed Google Scholar
Ransohoff RM, Perry VH (2009). Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol27: 119–145. CASPubMed Google Scholar
Renau-Piqueras J, Zaragoza R, De Paz P, Baguena-Cervellera R, Megias L, Guerri C (1989). Effects of prolonged ethanol exposure on the glial fibrillary acidic protein-containing intermediate filaments of astrocytes in primary culture: a quantitative immunofluorescence and immunogold electron microscopic study. J Histochem Cytochem37: 229–240. CASPubMed Google Scholar
Risher ML, Fleming RL, Risher WC, Miller KM, Klein RC, Wills T et al (2015a). Adolescent intermittent alcohol exposure: persistence of structural and functional hippocampal abnormalities into adulthood. Alcohol Clin Exp Res39: 989–997. CASPubMedPubMed Central Google Scholar
Risher ML, Sexton HG, Risher WC, Wilson WA, Fleming RL, Madison RD et al (2015b). Adolescent intermittent alcohol exposure: dysregulation of thrombospondins and synapse formation are associated with decreased neuronal density in the adult hippocampus. Alcohol Clin Exp Res39: 2403–2413. CASPubMedPubMed Central Google Scholar
Ritz MC, Cone EJ, Kuhar MJ (1990). Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci46: 635–645. CASPubMed Google Scholar
Rivest S (2009). Regulation of innate immune responses in the brain. Nat Rev Immunol9: 429–439. CASPubMed Google Scholar
Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M et al (2010). Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry67: 831–839. CASPubMedPubMed Central Google Scholar
Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B et al (1998). Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci1: 132–137. CASPubMed Google Scholar
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R et al (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol9: 1081–1088. CASPubMed Google Scholar
Root DH, Mejias-Aponte CA, Zhang S, Wang HL, Hoffman AF, Lupica CR et al (2014). Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci17: 1543–1551. CASPubMedPubMed Central Google Scholar
Rosenberg PA, Aizenman E (1989). Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett103: 162–168. CASPubMed Google Scholar
Rostène W, Kitabgi P, Parsadaniantz SM (2007). Chemokines: a new class of neuromodulator? Nat Rev Neurosci8: 895–903. PubMed Google Scholar
Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW et al (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron16: 675–686. CASPubMed Google Scholar
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G et al (2015). The sequenced rat brain transcriptome—its use in identifying networks predisposing alcohol consumption. FEBS J282: 3556–3578. CASPubMedPubMed Central Google Scholar
Saijo K, Glass CK (2011). Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol11: 775–787. CASPubMed Google Scholar
Salter MW, Beggs S (2014). Sublime microglia: expanding roles for the guardians of the CNS. Cell158: 15–24. CASPubMed Google Scholar
Samokhvalov IM, Samokhvalova NI, Nishikawa S (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature446: 1056–1061. CASPubMed Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron74: 691–705. CASPubMedPubMed Central Google Scholar
Schafer DP, Lehrman EK, Stevens B (2013). The ‘quad-partite’ synapse: microglia-synapse interactions in the developing and mature CNS. Glia61: 24–36. PubMed Google Scholar
Schafer DP, Stevens B (2013). Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol23: 1034–1040. CASPubMedPubMed Central Google Scholar
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science336: 86–90. CASPubMed Google Scholar
Schwarz JM, Hutchinson MR, Bilbo SD (2011). Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci31: 17835–17847. CASPubMedPubMed Central Google Scholar
Schwarz JM, Smith SH, Bilbo SD (2013). FACS analysis of neuronal-glial interactions in the nucleus accumbens following morphine administration. Psychopharmacology (Berl)230: 525–535. CAS Google Scholar
Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015). Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry78: 441–451. CASPubMed Google Scholar
Scofield MD, Li H, Siemsen BM, Healey KL, Tran PK, Woronoff N et al (2016). Cocaine self-administration and extinction leads to reduced glial fibrillary acidic protein expression and morphometric features of astrocytes in the nucleus accumbens core. Biol Psychiatry80: 207–215. CASPubMed Google Scholar
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N et al (2016). Schizophrenia risk from complex variation of complement component 4. Nature530: 177–183. CASPubMedPubMed Central Google Scholar
Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K et al (2008). Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci28: 5756–5761. CASPubMedPubMed Central Google Scholar
Shnitko TA, Spear LP, Robinson DL (2016). Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology (Berl)233: 361–371. CASPubMed Central Google Scholar
Shoaib M, Spanagel R, Stohr T, Shippenberg TS (1995). Strain differences in the rewarding and dopamine-releasing effects of morphine in rats. Psychopharmacology (Berl)117: 240–247. CAS Google Scholar
Sofuoglu M, Mooney M, Kosten T, Waters A, Hashimoto K (2011). Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology (Berl)213: 61–68. CAS Google Scholar
Stellwagen D, Malenka RC (2006). Synaptic scaling mediated by glial TNF-alpha. Nature440: 1054–1059. CASPubMed Google Scholar
Stence N, Waite M, Dailey ME (2001). Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia33: 256–266. CASPubMed Google Scholar
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al (2007). The classical complement cascade mediates CNS synapse elimination. Cell131: 1164–1178. CASPubMed Google Scholar
Stevens CW, Aravind S, Das S, Davis RL (2013). Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol168: 1421–1429. CASPubMedPubMed Central Google Scholar
Swartzwelder HS, Wilson WA, Tayyeb MI (1995). Age-dependent inhibition of long-term potentiation by ethanol in immature versus mature hippocampus. Alcohol Clin Exp Res19: 1480–1485. CASPubMed Google Scholar
Takayama N, Ueda H (2005). Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neurosci25: 430–435. CASPubMedPubMed Central Google Scholar
Takeda K, Akira S (2004). TLR signaling pathways. Semin Immunol16: 3–9. CASPubMed Google Scholar
Taylor AM, Castonguay A, Ghogha A, Vayssiere P, Pradhan AA, Xue L et al (2016). Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic morphine. Neuropsychopharmacology41: 949–959. CASPubMed Google Scholar
Taylor SB, Lewis CR, Olive MF (2013). The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil4: 29–43. PubMedPubMed Central Google Scholar
Theberge FR, Li X, Kambhampati S, Pickens CL, St Laurent R, Bossert JM et al (2013). Effect of chronic delivery of the Toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. Biol Psychiatry73: 729–737. CASPubMedPubMed Central Google Scholar
Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004). Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther311: 1–7. CASPubMed Google Scholar
Thomas WE (1992). Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev17: 61–74. CASPubMed Google Scholar
Tian L, Ma L, Kaarela T, Li Z (2012). Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation9: 155. CASPubMedPubMed Central Google Scholar
Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ et al (2007). Evidence for synaptic stripping by cortical microglia. Glia55: 360–368. PubMed Google Scholar
Tremblay MÈ, Lowery RL, Majewska AK (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biol8: e1000527. PubMedPubMed Central Google Scholar
Tritsch NX, Sabatini BL (2012). Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron76: 33–50. CASPubMedPubMed Central Google Scholar
Trotta T, Porro C, Calvello R, Panaro MA (2014). Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol268: 1–12. CASPubMed Google Scholar
Turchan-Cholewo J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, Knapp PE et al (2008). Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J Neurosci Res86: 2100–2110. CASPubMedPubMed Central Google Scholar
Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001). Control of synapse number by glia. Science291: 657–661. CASPubMed Google Scholar
Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT et al (2014). Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci40: 3041–3054. PubMedPubMed Central Google Scholar
Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R et al (1997). Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature386: 830–833. CASPubMed Google Scholar
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci29: 3974–3980. CASPubMedPubMed Central Google Scholar
Walsh JG, Muruve DA, Power C (2014). Inflammasomes in the CNS. Nat Rev Neurosci15: 84–97. CASPubMed Google Scholar
Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD et al (2000). PU.1 expression in microglia. J Neuroimmunol104: 109–115. CASPubMed Google Scholar
Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006). Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des12: 3521–3533. CASPubMed Google Scholar
Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K et al (2012a). Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci USA109: 6325–6330. CASPubMedPubMed Central Google Scholar
Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H et al (2016). Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol173: 856–869. CASPubMedPubMed Central Google Scholar
Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M et al (2012b). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol13: 753–760. CASPubMedPubMed Central Google Scholar
Warner LA, Kessler RC, Hughes M, Anthony JC, Nelson CB (1995). Prevalence and correlates of drug use and dependence in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry52: 219–229. CASPubMed Google Scholar
Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009). The ‘toll’ of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci30: 581–591. CASPubMedPubMed Central Google Scholar
Weiss F, Lorang MT, Bloom FE, Koob GF (1993). Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther267: 250–258. CASPubMed Google Scholar
Weiss F, Porrino LJ (2002). Behavioral neurobiology of alcohol addiction: recent advances and challenges. J Neurosci22: 3332–3337. CASPubMedPubMed Central Google Scholar
Werling DM, Parikshak NN, Geschwind DH (2016). Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun7: 10717. CASPubMedPubMed Central Google Scholar
Wilhelm CJ, Guizzetti M (2015). Fetal alcohol spectrum disorders: an overview from the glia perspective. Front Integr Neurosci9: 65. PubMed Google Scholar
Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD (2011). Microglia and memory: modulation by early-life infection. J Neurosci31: 15511–15521. CASPubMedPubMed Central Google Scholar
Wu Y, Lousberg EL, Moldenhauer LM, Hayball JD, Coller JK, Rice KC et al (2012). Inhibiting the TLR4-MyD88 signalling cascade by genetic or pharmacological strategies reduces acute alcohol-induced sedation and motor impairment in mice. Br J Pharmacol165: 1319–1329. CASPubMedPubMed Central Google Scholar
Xanthos DN, Sandkühler J (2014). Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci15: 43–53. CASPubMed Google Scholar
Xu HT, Pan F, Yang G, Gan WB (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci10: 549–551. CASPubMed Google Scholar
Yan H, Li Q, Madison R, Wilson WA, Swartzwelder HS (2010). Differential sensitivity of hippocampal interneurons to ethanol in adolescent and adult rats. J Pharmacol Exp Ther335: 51–60. CASPubMedPubMed Central Google Scholar
Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY, Chen BS (2010). Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFalpha-induced inflammatory responses. BMC Med Genomics3: 19. PubMedPubMed Central Google Scholar
Yim HJ, Gonzales RA (2000). Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol22: 107–115. CASPubMed Google Scholar
Yoon SY, Patel D, Dougherty PM (2012). Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience221: 214–224. CASPubMed Google Scholar
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A et al (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science347: 1138–1142. CASPubMed Google Scholar
Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F et al (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci17: 400–406. CASPubMed Google Scholar
Zhang XQ, Cui Y, Cui Y, Chen Y, Na XD, Chen FY et al (2012). Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav Immun26: 318–325. CASPubMed Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S et al (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci34: 11929–11947. CASPubMedPubMed Central Google Scholar