In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract (original) (raw)
References
Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the differentiation of human endothelial cells into capillary-like structures. J. Cell Biol.107, 1589–1597 (1988). ArticleCASPubMed Google Scholar
Benelli, R. & Albini, A. In vitro models of angiogenesis: the use of Matrigel. Int. J. Biol. Markers14, 243–246 (1999). ArticleCASPubMed Google Scholar
Auerbach, R., Lewis, R., Shinners, B., Kribai, L. & Akhtar, N. Angiogenesis assays: a critical overview. Clin. Chem.49, 32–40 (2003). ArticleCASPubMed Google Scholar
Arnaoutova, I., George, J., Kleinman, H.K. & Benton, G. The endothelial cell tube formation assay on basement membrane turns 20. Angiogenesis12, 267–74 (2009). ArticlePubMed Google Scholar
Kinsella, J.L., Grant, D.S., Weeks, B.S. & Kleinman, H.K. Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp. Cell Res.199, 56–62 (1992). ArticleCASPubMed Google Scholar
Grove, A.D. et al. Both protein activation and gene expression are involved in early vascular tube formation in vitro . Clin. Cancer Res.8, 3019–3026 (2002). CASPubMed Google Scholar
Grant, D.S. et al. Matrigel induces thymosin beta4 gene in differentiating endothelial cells. J. Cell Sci.108, 3685–3694 (1995). CASPubMed Google Scholar
Fukushima, K. et al. Gene expression profiles by microarray analysis during matrigel-induced tube formation in a human extravillous trophoblast cell line: comparison with endothelial cells. Placenta29, 898–904 (2008). ArticleCASPubMed Google Scholar
Bagley, R.G. et al. Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res.63, 5866–5873 (2003). CASPubMed Google Scholar
Mukai, N. et al. A comparison of the tube forming protentials of early and late endothelial progenitor cells. Exp. Cell Res.314, 430–440 (2008). ArticleCASPubMed Google Scholar
Rogers, M.S., Birsner, A.E. & D'amato, R.J. The mouse corneal micropocket angiogenesis assay. Nat. Protoc.2, 2524–2550 (2007). Article Google Scholar
Ribatti, D., Nico, B., Vacca, A. & Presta, M. The gelatin-sponge chorioallantoic membrane assay. Nat. Protoc.1, 85–91 (2006). ArticleCASPubMed Google Scholar
Cid, M.C. et al. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J. Clin. Invest.91, 977–985 (1993). ArticleCASPubMedPubMed Central Google Scholar
Grant, D.S. et al. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures. Cell58, 933–943 (1989). ArticleCASPubMed Google Scholar
Kleinman, H.K. & Martin, G.R. Matrigel: Basement membrane extracellular matrix with biological activity. Semin. Cancer Biol.15, 378–386 (2005). ArticleCASPubMed Google Scholar
Lee, G.Y., Kenny, P.A., Lee, E.H. & Bissell, M.J. Three-dimentional culture models on normal and malignant breast epithelial cells. Nat. Methods4, 359–365 (2007). ArticleCASPubMedPubMed Central Google Scholar
Albini, A. & Benelli, R. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc.2, 504–511 (2007). ArticleCASPubMed Google Scholar
O'Connell, K.A. & Edidin, M. A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells. J. Immunol.144, 521–525 (1990). CASPubMed Google Scholar
Ades, E.W. et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol.99, 683–690 (1992). ArticleCASPubMed Google Scholar
Shen, J.S., Meng, X.L., Schiffmann, R., Brady, R.O. & Kaneski, C.R. Establishement and characterization of Fabry disease endothelial cells with an extended lifespan. Mol. Genet. Metab.92, 137–144 (2007). ArticleCASPubMedPubMed Central Google Scholar
Van Beijnum, J.R., Rousch, M., Castermans, K., van der Linden, E. & Griffioen, A.W. Isolation of endothelial cells from fresh tissues. Nat. Protoc.3, 1085–1091 (2008). ArticleCASPubMed Google Scholar
Plendl, J., Neumuller, C., Vollmar, A., Auerbach, R. & Sinowatz, F. Isolation and characterization of endothelial cells from different organs of fetal pigs. Anat. Embryol.194, 445–456 (1996). ArticleCAS Google Scholar
Yu, D. & Auerbach, R. Brain-specific differentiation of mouse yolk sac endothelial cells Brain Res. Dev. Brain Res.117, 59–169 (1999). Article Google Scholar
Gumkowski, F., Kaminska, G., Kaminski, M., Morrissey, L.W. & Auerbach, R. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large, blood vessel and microvascular endothelial cells. Blood Vessels24, 11–23 (1987). CASPubMed Google Scholar
Grant, D.S., Lelkes, P.I., Fukuda, K. & Kleinman, H.K. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro . In Vitro Cell Dev. Biol.27, 327–335 (1991). Article Google Scholar
Elkin, M. et al. Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. FASEB J.14, 2477–2485 (2000). ArticleCASPubMed Google Scholar
Haralabopoulos, G.C. et al. Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo . Lab. Invest.71, 575–582 (1994). CASPubMed Google Scholar
Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med.9, 267–285 (2007). Article Google Scholar
Taub, M., Wang, Y., Szcesney, T.M., Kleinman, H.K. & Martin, G.R. Epidermal growth factor or transforming growth factor β is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc. Natl Acad. Sci. USA87, 4002–4006 (1990). ArticleCASPubMedPubMed Central Google Scholar
Vukicevic, S. et al. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell. Res202, 1–8 (1992). ArticleCASPubMed Google Scholar
Morales, D. et al. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation91, 755–763 (1995). ArticleCASPubMed Google Scholar
Gho, Y.S., Kleinman, H.K. & Sosne, G. Angiogenic activity of human soluble intercellular adhesion molecule-1. Cancer Res.59, 5128–5132 (1999). CASPubMed Google Scholar
Foubert, P. et al. Coadministration of endothelial and smooth muscle progenitor cells enhances the efficacy of proangiogenic cell-based therapy. Circ. Res.103, 751–760 (2008). ArticleCASPubMed Google Scholar