Single-cell analysis and sorting using droplet-based microfluidics (original) (raw)
Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip12, 2146–2155 (2012). ArticleCASPubMed Google Scholar
Kintses, B., van Vliet, L.D., Devenish, S.R. & Hollfelder, F. Microfluidic droplets: new integrated workflows for biological experiments. Curr. Opin. Chem. Biol.14, 548–555 (2010). ArticleCASPubMed Google Scholar
Theberge, A.B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed.49, 5846–5868 (2010). ArticleCAS Google Scholar
Link, D.R., Anna, S.L., Weitz, D.A. & Stone, H.A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett.92, 054503 (2004). ArticleCASPubMed Google Scholar
Mazutis, L., Baret, J.C. & Griffiths, A.D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip9, 2665–2672 (2009). ArticleCASPubMed Google Scholar
Mazutis, L. & Griffiths, A.D. Selective droplet coalescence using microfluidic systems. Lab Chip12, 1800–1806 (2012). ArticleCASPubMed Google Scholar
Ahn, K., Agresti, J., Chong, H., Marquez, M. & Weitz, D.A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett.88, 264105–264103 (2006). ArticleCAS Google Scholar
Chabert, M., Dorfman, K.D. & Viovy, J.L. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis26, 3706–3715 (2005). ArticleCASPubMed Google Scholar
Priest, C., Herminghaus, S. & Seemann, R. Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl. Phys. Lett.89, 134101 (2006). ArticleCAS Google Scholar
Abate, A.R., Hung, T., Mary, P., Agresti, J.J. & Weitz, D.A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl. Acad. Sci. USA107, 19163–19166 (2010). ArticlePubMedPubMed Central Google Scholar
Li, L. et al. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA103, 19243–19248 (2006). ArticleCASPubMedPubMed Central Google Scholar
Frenz, L., Blank, K., Brouzes, E. & Griffiths, A.D. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip9, 1344–1348 (2009). ArticleCASPubMed Google Scholar
Hatch, A.C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip11, 3838–3845 (2011). ArticleCASPubMed Google Scholar
Shim, J.U. et al. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc.42, 15251–15256 (2009). ArticleCAS Google Scholar
Mazutis, L. et al. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem.81, 4813–4821 (2009). ArticleCASPubMed Google Scholar
Najah, M., Griffiths, A.D. & Ryckelynck, M. Teaching single-cell digital analysis using droplet-based microfluidics. Anal. Chem.84, 1202–1209 (2012). ArticleCASPubMed Google Scholar
Ahn, K. et al. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett.88, 024104 (2006). ArticleCAS Google Scholar
Franke, T., Abate, A.R., Weitz, D.A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip9, 2625–2627 (2009). ArticleCASPubMed Google Scholar
Debs, B.E., Utharala, R., Balyasnikova, I.V., Griffiths, A.D. & Merten, C.A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA109, 11570–11575 (2012). ArticlePubMedPubMed Central Google Scholar
Granieri, L., Baret, J.C., Griffiths, A.D. & Merten, C.A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chem. Biol.17, 229–235 (2010). ArticleCASPubMed Google Scholar
He, M. et al. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem.77, 1539–1544 (2005). ArticleCASPubMed Google Scholar
Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol.15, 427–437 (2008). ArticleCASPubMed Google Scholar
Koster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip8, 1110–1115 (2008). ArticleCASPubMed Google Scholar
Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA106, 14195–14200 (2009). ArticlePubMedPubMed Central Google Scholar
Liu, W., Kim, H.J., Lucchetta, E.M., Du, W. & Ismagilov, R.F. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip9, 2153–2162 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hufnagel, H. et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip9, 1576–1582 (2009). ArticleCASPubMed Google Scholar
Zeng, Y., Novak, R., Shuga, J., Smith, M.T. & Mathies, R.A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem.82, 3183–3190 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rane, T.D., Zec, H.C., Puleo, C., Lee, A.P. & Wang, T.H. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip12, 3341–3347 (2012). ArticleCASPubMedPubMed Central Google Scholar
Huebner, A. et al. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem.80, 3890–3896 (2008). ArticleCASPubMed Google Scholar
Baret, J.C., Beck, Y., Billas-Massobrio, I., Moras, D. & Griffiths, A.D. Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem. Biol.17, 528–536 (2010). ArticleCASPubMed Google Scholar
Huebner, A. et al. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem. Commun. (Camb)28, 1218–1220 (2007). ArticleCAS Google Scholar
Chen, D. et al. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc. Natl. Acad. Sci. USA105, 16843–16848 (2008). ArticlePubMedPubMed Central Google Scholar
Niu, X., Gielen, F., Edel, J.B. & deMello, A.J. A microdroplet dilutor for high-throughput screening. Nat. Chem.3, 437–442 (2011). ArticleCASPubMed Google Scholar
Mazutis, L. et al. Multi-step microfluidic droplet processing: kinetic analysis of an _in vitro_–translated enzyme. Lab Chip9, 2902–2908 (2009). ArticleCASPubMed Google Scholar
Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip11, 2156–2166 (2011). ArticleCASPubMed Google Scholar
Zhong, Q. et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip11, 2167–2174 (2011). ArticleCASPubMed Google Scholar
Hindson, B.J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem.83, 8604–8610 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miller, O.J. et al. High-resolution dose-response screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA109, 378–383 (2012). ArticlePubMed Google Scholar
Clausell-Tormos, J., Griffiths, A.D. & Merten, C.A. An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab Chip10, 1302–1307 (2010). ArticleCASPubMed Google Scholar
Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip12, 1629–1637 (2012). ArticleCASPubMed Google Scholar
Agresti, J.J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA107, 4004–4009 (2010). ArticlePubMedPubMed Central Google Scholar
Kintses, B. et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol.19, 1001–1009 (2012). ArticleCASPubMed Google Scholar
Simons, J.H. & Linevsky, M.J. The solubility of organic solids in fluorocarbon derivatives. J. Am. Chem. Soc.74, 4750–4751 (1952). ArticleCAS Google Scholar
Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol.16, 652–656 (1998). ArticleCASPubMed Google Scholar
Baret, J.C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip9, 1850–1858 (2009). ArticleCASPubMed Google Scholar
Martino, C. et al. Intracellular protein determination using droplet-based immunoassays. Anal. Chem.83, 5361–5368 (2011). ArticleCASPubMed Google Scholar
Beer, N.R. et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal. Chem.80, 1854–1858 (2008). ArticleCASPubMed Google Scholar
Schaerli, Y. et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem.81, 302–306 (2009). ArticleCASPubMed Google Scholar
Beer, N.R. et al. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal. Chem.79, 8471–8475 (2007). ArticleCASPubMed Google Scholar
Olsen, M.J. et al. Function-based isolation of novel enzymes from a large library. Nat. Biotechnol.18, 1071–1074 (2000). ArticleCASPubMed Google Scholar
Aharoni, A. et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat. Methods3, 609–614 (2006). ArticleCASPubMed Google Scholar
Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science288, 113–116 (2000). ArticleCASPubMed Google Scholar
Weinstein, J.A., Jiang, N., White, R.A. III, Fisher, D.S. & Quake, S.R. High-throughput sequencing of the zebrafish antibody repertoire. Science324, 807–810 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol.29, 51–57 (2011). ArticleCASPubMed Google Scholar
Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods8, 581–586 (2011). ArticleCASPubMed Google Scholar
Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der Veen, A.G. & Ploegh, H.L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol.24, 703–707 (2006). ArticleCASPubMed Google Scholar
Taly, V., Pekin, D., El Abed, A. & Laurent-Puig, P. Detecting biomarkers with microdroplet technology. Trends Mol. Med.18, 405–416 (2012). ArticleCASPubMed Google Scholar
Choi, J.W., Kang, D.K., Park, H., deMello, A.J. & Chang, S.I. High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization. Anal. Chem.84, 3849–3854 (2012). ArticleCASPubMed Google Scholar
Joensson, H.N., Zhang, C., Uhlen, M. & Andersson-Svahn, H. A homogeneous assay for protein analysis in droplets by fluorescence polarization. Electrophoresis33, 436–439 (2012). ArticleCASPubMed Google Scholar
Srisa-Art, M., Dyson, E.C., Demello, A.J. & Edel, J.B. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal. Chem.80, 7063–7067 (2008). ArticleCASPubMed Google Scholar
Cecchini, M.P. et al. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal. Chem.83, 3076–3081 (2011). ArticleCASPubMed Google Scholar
Reymond, J.L., Fluxa, V.S. & Maillard, N. Enzyme assays. Chem. Commun.2009, 34–46 (2009). Google Scholar
Joensson, H.N. et al. Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew. Chem. Int. Ed. Engl.48, 2518–2521 (2009). ArticleCASPubMed Google Scholar
Anna, S.L., Bontoux, N. & Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett.82, 364–366 (2003). ArticleCAS Google Scholar
Garstecki, P., Fuerstman, M.J., Stone, H.A. & Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip6, 437–446 (2006). ArticleCASPubMed Google Scholar
Abate, A.R. et al. Impact of inlet channel geometry on microfluidic drop formation. Phys. Rev. E80, 026310 (2009). ArticleCAS Google Scholar
Sugiura, S., Nakajima, M., Iwamoto, S. & Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir17, 5562–5566 (2001). ArticleCAS Google Scholar
Baret, J.C., Kleinschmidt, F., El Harrak, A. & Griffiths, A.D. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir25, 6088–6093 (2009). ArticleCASPubMed Google Scholar
Roach, L.S., Song, H. & Ismagilov, R.F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem.77, 785–796 (2005). ArticleCASPubMedPubMed Central Google Scholar
Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip8, 1632–1639 (2008). ArticleCASPubMed Google Scholar
Chen, F. et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal. Chem.83, 8816–8820 (2011). ArticleCASPubMed Google Scholar
Hudlicky, M. & Pavlath, A.E. Chemistry of Organic Fluorine Compounds. (American Chemical Society, 1995).
Skhiri, Y. Dynamics of molecular transport by surfactants in emulsions. Soft Matter8, 10618–10627 (2012). ArticleCAS Google Scholar
Woronoff, G. et al. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal. Chem.83, 2852–2857 (2011). ArticleCASPubMed Google Scholar
Courtois, F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal. Chem.81, 3008–3016 (2009). ArticleCASPubMed Google Scholar
Siegel, A.C. et al. Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). Angew Chem. Int. Ed. Engl.45, 6877–6882 (2006). ArticleCASPubMed Google Scholar
Asmolov, E.S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech.381, 63–87 (1999). ArticleCAS Google Scholar
Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA104, 18892–18897 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kemna, E.W.M. et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip12, 2881–2887 (2012). ArticleCASPubMed Google Scholar
Ford, T., Graham, J. & Rickwood, D. Iodixanol—a nonionic isosmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem.220, 360–366 (1994). ArticleCASPubMed Google Scholar
Bruce, A.T. et al. Use of iodixanol self-generated density gradients to enrich for viable urothelial cells from nonneurogenic and neurogenic bladder tissue. Tissue Eng. Part C Methods16, 33–40 (2010). ArticleCASPubMed Google Scholar
Graziani-Bowering, G.M., Graham, J.M. & Filion, L.G. A quick, easy and inexpensive method for the isolation of human peripheral blood monocytes. J. Immunol. Methods207, 157–168 (1997). ArticleCASPubMed Google Scholar
Chabert, M. & Viovy, J.L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. USA105, 3191–3196 (2008). ArticlePubMedPubMed Central Google Scholar