Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease (original) (raw)

References

  1. Samuel, V.T., Petersen, K.F. & Shulman, G.I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).
    Article CAS Google Scholar
  2. Hagberg, C.E. et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490, 426–430 (2012).
    Article CAS Google Scholar
  3. Unger, R.H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).
    Article CAS Google Scholar
  4. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).
    Article CAS Google Scholar
  5. Bostrom, P. et al. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat. Cell Biol 9, 1286–1293 (2007).
    Article Google Scholar
  6. Sollner, T.H. Lipid droplets highjack SNAREs. Nat. Cell Biol. 9, 1219–1220 (2007).
    Article Google Scholar
  7. Kim, F. et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1982–1988 (2008).
    Article CAS Google Scholar
  8. Duncan, E.R. et al. Effect of endothelium-specific insulin resistance on endothelial function in vivo. Diabetes 57, 3307–3314 (2008).
    Article CAS Google Scholar
  9. Park, S.Y. et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 54, 3530–3540 (2005).
    Article CAS Google Scholar
  10. Ahmadian, M., Duncan, R.E. & Sul, H.S. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009).
    Article CAS Google Scholar
  11. Farese, R.V. Jr., Zechner, R., Newgard, C.B. & Walther, T.C. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab. 15, 570–573 (2012).
    Article CAS Google Scholar
  12. Avramoglu, R.K., Basciano, H. & Adeli, K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta. 368, 1–19 (2006).
    Article CAS Google Scholar
  13. Hagberg, C.E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917–921 (2010).
    Article CAS Google Scholar
  14. Spangenburg, E.E., Pratt, S.J., Wohlers, L.M. & Lovering, R.M. Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. J. Biomed. Biotechnol. 2011, 598358 (2011).
    Article Google Scholar
  15. Falcon, A. et al. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab. 299, E384–E393 (2010).
    Article CAS Google Scholar
  16. Bonilla, E. & Prelle, A. Application of nile blue and nile red, two fluorescent probes, for detection of lipid droplets in human skeletal muscle. J. Histochem. Cytochem. 35, 619–621 (1987).
    Article CAS Google Scholar
  17. Fowler, S.D. & Greenspan, P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J. Histochem. Cytochem. 33, 833–836 (1985).
    Article CAS Google Scholar
  18. Fuchs, B., Suss, R., Teuber, K., Eibisch, M. & Schiller, J. Lipid analysis by thin-layer chromatography—a review of the current state. J. Chromatogr. A 1218, 2754–2774 (2011).
    Article CAS Google Scholar
  19. Fuchs, B., Suss, R. & Schiller, J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 49, 450–475 (2010).
    Article CAS Google Scholar
  20. Ramirez-Zacarias, J.L., Castro-Munozledo, F. & Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97, 493–497 (1992).
    Article CAS Google Scholar
  21. Levene, A.P. et al. Quantifying hepatic steatosis—more than meets the eye. Histopathology 60, 971–981 (2012).
    Article Google Scholar
  22. Catta-Preta, M., Mendonca, L.S., Fraulob-Aquino, J., Aguila, M.B. & Mandarim-de-Lacerda, C.A. A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Arch. 459, 477–485 (2011).
    Article Google Scholar
  23. De Bock, K. et al. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am. J. Physiol. Endocrinol. Metab. 293, E428–E434 (2007).
    Article CAS Google Scholar
  24. Shaw, C.S., Jones, D.A. & Wagenmakers, A.J. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem. Cell Biol. 129, 65–72 (2008).
    Article CAS Google Scholar
  25. Olofsson, S.O. et al. Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr. Opin. Lipidol. 19, 441–447 (2008).
    Article CAS Google Scholar
  26. Fukumoto, S. & Fujimoto, T. Deformation of lipid droplets in fixed samples. Histochem. Cell Biol. 118, 423–428 (2002).
    Article CAS Google Scholar
  27. Zhou, J., Lhotak, S., Hilditch, B.A. & Austin, R.C. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E–deficient mice. Circulation 111, 1814–1821 (2005).
    Article CAS Google Scholar
  28. Pizzurro, G.A. et al. High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function. Cancer Immunol. Immunother. 62, 3–15 (2013).
    Article CAS Google Scholar
  29. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    Article CAS Google Scholar
  30. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).
    Article CAS Google Scholar

Download references