Global, in situ, site-specific analysis of protein S-sulfenylation (original) (raw)
Roos, G. & Messens, J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med.51, 314–326 (2011). ArticleCASPubMed Google Scholar
Kettenhofen, N.J. & Wood, M.J. Formation, reactivity, and detection of protein sulfenic acids. Chem. Res. Toxicol.23, 1633–1646 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gupta, V. & Carroll, K.S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta1840, 847–875 (2014). ArticleCASPubMed Google Scholar
Lee, S.R., Kwon, K.S., Kim, S.R. & Rhee, S.G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem.273, 15366–15372 (1998). ArticleCASPubMed Google Scholar
van Montfort, R.L., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature423, 773–777 (2003). ArticleCASPubMed Google Scholar
Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science334, 1278–1283 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sobotta, M.C. et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol.11, 64–70 (2015). ArticleCASPubMed Google Scholar
Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D. & Paull, T.T. ATM activation by oxidative stress. Science330, 517–521 (2010). ArticleCASPubMed Google Scholar
Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med.80, 148–157 (2015). ArticleCASPubMed Google Scholar
Claiborne, A., Miller, H., Parsonage, D. & Ross, R.P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J.7, 1483–1490 (1993). ArticleCASPubMed Google Scholar
Willett, W.S. & Copley, S.D. Identification and localization of a stable sulfenic acid in peroxide-treated tetrachlorohydroquinone dehalogenase using electrospray mass spectrometry. Chem. Biol.3, 851–857 (1996). ArticleCASPubMed Google Scholar
Depuydt, M. et al. A periplasmic reducing system protects single cysteine residues from oxidation. Science326, 1109–1111 (2009). ArticleCASPubMed Google Scholar
Wood, Z.A., Poole, L.B. & Karplus, P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science300, 650–653 (2003). ArticleCASPubMed Google Scholar
Paulsen, C.E. & Carroll, K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev.113, 4633–4679 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rosenwasser, S. et al. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc. Natl. Acad. Sci. USA111, 2740–2745 (2014). ArticleCASPubMedPubMed Central Google Scholar
Su, D. et al. Proteomic identification and quantification of _S_-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radic. Biol. Med.67, 460–470 (2014). ArticleCASPubMed Google Scholar
Garcia-Santamarina, S. et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc.9, 1131–1145 (2014). ArticleCASPubMed Google Scholar
Derakhshan, B., Wille, P.C. & Gross, S.S. Unbiased identification of cysteine _S_-nitrosylation sites on proteins. Nat. Protoc.2, 1685–1691 (2007). ArticleCASPubMed Google Scholar
Hao, G., Derakhshan, B., Shi, L., Campagne, F. & Gross, S.S. SNOSID, a proteomic method for identification of cysteine _S_-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. USA103, 1012–1017 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leichert, L.I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA105, 8197–8202 (2008). ArticleCASPubMedPubMed Central Google Scholar
Guo, J. et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat. Protoc.9, 64–75 (2014). ArticleCASPubMed Google Scholar
Su, D. et al. Quantitative site-specific reactivity profiling of _S_-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radic. Biol. Med.57, 68–78 (2013). ArticleCASPubMed Google Scholar
Brandes, N., Reichmann, D., Tienson, H., Leichert, L.I. & Jakob, U. Using quantitative redox proteomics to dissect the yeast redoxome. J. Biol. Chem.286, 41893–41903 (2011). ArticleCASPubMedPubMed Central Google Scholar
Devarie Baez, N.O., Reisz, J.A. & Furdui, C.M. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic. Biol. Med.80, 191–211 (2014). ArticlePubMed CentralCAS Google Scholar
Reisz, J.A., Bechtold, E., King, S.B., Poole, L.B. & Furdui, C.M. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J.280, 6150–6161 (2013). ArticleCASPubMedPubMed Central Google Scholar
Benitez, L.V. & Allison, W.S. The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J. Biol. Chem.249, 6234–6243 (1974). ArticleCASPubMed Google Scholar
Poole, L.B. et al. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug. Chem.18, 2004–2017 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wani, R. et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl. Acad. Sci. USA108, 10550–10555 (2011). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, C.E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol.8, 57–64 (2012). ArticleCAS Google Scholar
Truong, T.H. & Carroll, K.S. Bioorthogonal chemical reporters for analyzing protein sulfenylation in cells. Curr. Protoc. Chem. Biol.4, 101–122 (2012). Article Google Scholar
Kulathu, Y. et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun.4, 1569 (2013). ArticleCASPubMed Google Scholar
Yang, J., Gupta, V., Carroll, K.S. & Liebler, D.C. Site-specific mapping and quantification of protein _S_-sulfenylation in cells. Nat. Commun.5, 4776 (2014). ArticleCASPubMed Google Scholar
Kim, H.Y., Tallman, K.A., Liebler, D.C. & Porter, N.A. An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Mol. Cell. Proteomics8, 2080–2089 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Enrichment and site mapping of _O_-linked _N_-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics9, 153–160 (2010). ArticleCASPubMed Google Scholar
Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc.127, 10018–10019 (2005). ArticleCASPubMedPubMed Central Google Scholar
Weerapana, E., Speers, A.E. & Cravatt, B.F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc.2, 1414–1425 (2007). ArticleCASPubMed Google Scholar
Zheng, T., Jiang, H. & Wu, P. Single-stranded DNA as a cleavable linker for bioorthogonal click chemistry-based proteomics. Bioconjug. Chem.24, 859–864 (2013). ArticleCASPubMedPubMed Central Google Scholar
Szychowski, J. et al. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J. Am. Chem. Soc.132, 18351–18360 (2010). ArticleCASPubMedPubMed Central Google Scholar
Qian, Y. et al. An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. Chembiochem14, 1410–1414 (2013). ArticleCASPubMed Google Scholar
Hulce, J.J., Cognetta, A.B., Niphakis, M.J., Tully, S.E. & Cravatt, B.F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods10, 259–264 (2013). ArticlePubMedPubMed Central Google Scholar
Codreanu, S.G., Zhang, B., Sobecki, S.M., Billheimer, D.D. & Liebler, D.C. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol. Cell. Proteomics8, 670–680 (2009). ArticleCASPubMedPubMed Central Google Scholar
Codreanu, S.G. et al. Alkylation damage by lipid electrophiles targets functional protein systems. Mol. Cell. Proteomics13, 849–859 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lanning, B.R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol.10, 760–767 (2014). ArticleCASPubMedPubMed Central Google Scholar
Martin, B.R., Wang, C., Adibekian, A., Tully, S.E. & Cravatt, B.F. Global profiling of dynamic protein palmitoylation. Nat. Methods9, 84–89 (2012). ArticleCAS Google Scholar
Wang, C., Weerapana, E., Blewett, M.M. & Cravatt, B.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods11, 79–85 (2014). ArticlePubMedCAS Google Scholar
Deng, X. et al. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe13, 358–370 (2013). ArticleCASPubMedPubMed Central Google Scholar
Presolski, S.I., Hong, V., Cho, S.H. & Finn, M.G. Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J. Am. Chem. Soc.132, 14570–14576 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lin, D., Li, J., Slebos, R.J. & Liebler, D.C. Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation. J. Proteome Res.9, 5461–5472 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Acedo, P., Gupta, V. & Carroll, K.S. Proteomic analysis of peptides tagged with dimedone and related probes. J. Mass Spectrom.49, 257–265 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods10, 634–637 (2013). ArticleCASPubMedPubMed Central Google Scholar
Alfaro, J.F. et al. Tandem mass spectrometry identifies many mouse brain _O_-GlcNAcylated proteins including EGF domain-specific _O_-GlcNAc transferase targets. Proc. Natl. Acad. Sci. USA109, 7280–7285 (2012). ArticleCASPubMedPubMed Central Google Scholar
Doulias, P.T. et al. Structural profiling of endogenous _S_-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein _S_-nitrosylation. Proc. Natl. Acad. Sci. USA107, 16958–16963 (2010). ArticleCASPubMedPubMed Central Google Scholar
Glatter, T. et al. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res.11, 5145–5156 (2012). ArticleCASPubMed Google Scholar
Guo, X., Trudgian, D.C., Lemoff, A., Yadavalli, S. & Mirzaei, H. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics. Mol. Cell. Proteomics13, 1573–1584 (2014). ArticleCASPubMedPubMed Central Google Scholar
Huesgen, P.F. et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods12, 55–58 (2015). ArticleCASPubMed Google Scholar
Besanceney-Webler, C. et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl.50, 8051–8056 (2011). ArticleCASPubMedPubMed Central Google Scholar
Holman, J.D., Ma, Z.Q. & Tabb, D.L. Identifying proteomic LC-MS/MS data sets with Bumbershoot and IDPicker. Curr. Protoc. Bioinform.37, 13.17.1–13.17.15 (2012). Article Google Scholar
Holman, J.D., Dasari, S. & Tabb, D.L. Informatics of protein and posttranslational modification detection via shotgun proteomics. Methods Mol. Biol.1002, 167–179 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tabb, D.L., Ma, Z.Q., Martin, D.B., Ham, A.J. & Chambers, M.C. DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J. Proteome Res.7, 3838–3846 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ma, Z.Q. et al. IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J. Proteome Res.8, 3872–3881 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tabb, D.L., Friedman, D.B. & Ham, A.J. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat. Protoc.1, 2213–2222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y., Kwon, S.W., Kim, S.C. & Zhao, Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J. Proteome Res.4, 998–1005 (2005). ArticleCASPubMed Google Scholar
Schilling, B. et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol. Cell. Proteomics11, 202–214 (2012). ArticleCASPubMedPubMed Central Google Scholar
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics26, 966–968 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1, 376–386 (2002). ArticleCASPubMed Google Scholar
Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999). ArticleCASPubMed Google Scholar
Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3, 1154–1169 (2004). ArticleCASPubMed Google Scholar
Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol.9, 475–484 (2013). ArticleCASPubMed Google Scholar