Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol.14, 329–342 (2014). ArticleCAS Google Scholar
Wirtz, S. & Neurath, M.F. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev.59, 1073–1083 (2007). ArticleCAS Google Scholar
Saleh, M. & Elson, C.O. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity34, 293–302 (2011). ArticleCAS Google Scholar
Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol.20, 495–549 (2002). ArticleCAS Google Scholar
Lopez-Posadas, R. et al. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation. J. Clin. Invest.126, 611–626 (2016). Article Google Scholar
Perse, M. & Cerar, A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol.2012, 718617 (2012). Article Google Scholar
Elson, C.O. et al. Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J. Immunol.157, 2174–2185 (1996). CASPubMed Google Scholar
Fiorucci, S. et al. Importance of innate immunity and collagen binding integrin α1β1 in TNBS-induced colitis. Immunity17, 769–780 (2002). ArticleCAS Google Scholar
Neurath, M.F., Fuss, I., Kelsall, B.L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med.182, 1281–1290 (1995). ArticleCAS Google Scholar
Dohi, T. et al. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med.189, 1169–1180 (1999). ArticleCAS Google Scholar
Kiesler, P., Fuss, I.J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol.1, 154–170 (2015). Article Google Scholar
Rieder, F., Zimmermann, E.M., Remzi, F.H. & Sandborn, W.J. Crohn's disease complicated by strictures: a systematic review. Gut62, 1072–1084 (2013). ArticleCAS Google Scholar
Fichtner-Feigl, S. et al. Induction of IL-13 triggers TGF-β1-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis. J. Immunol.178, 5859–5870 (2007). ArticleCAS Google Scholar
Boirivant, M., Fuss, I.J., Chu, A. & Strober, W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med.188, 1929–1939 (1998). ArticleCAS Google Scholar
Heller, F., Fuss, I.J., Nieuwenhuis, E.E., Blumberg, R.S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity17, 629–638 (2002). ArticleCAS Google Scholar
Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol.15, 676–686 (2014). ArticleCAS Google Scholar
Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science336, 489–493 (2012). ArticleCAS Google Scholar
Hoving, J.C. et al. B cells that produce immunoglobulin E mediate colitis in BALB/c mice. Gastroenterology142, 96–108 (2012). ArticleCAS Google Scholar
Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology98, 694–702 (1990). ArticleCAS Google Scholar
Laroui, H. et al. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One7, e32084 (2012). ArticleCAS Google Scholar
Hernandez-Chirlaque, C. et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J. Crohns Colitis10, 1324–1335 (2016). Article Google Scholar
Hudcovic, T., Stepankova, R., Cebra, J. & Tlaskalova-Hogenova, H. The role of microflora in the development of intestinal inflammation: acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol.46, 565–572 (2001). ArticleCAS Google Scholar
Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell145, 745–757 (2011). ArticleCAS Google Scholar
Dieleman, L.A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology107, 1643–1652 (1994). ArticleCAS Google Scholar
Krieglstein, C.F. et al. Collagen-binding integrin α1β1 regulates intestinal inflammation in experimental colitis. J. Clin. Invest.110, 1773–1782 (2002). ArticleCAS Google Scholar
Dieleman, L.A. et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol.114, 385–391 (1998). ArticleCAS Google Scholar
Rosen, M.J. et al. Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only Crohn's disease in treatment-naive pediatric patients. Gastroenterology152, 1345–1357 (2017). ArticleCAS Google Scholar
Reinisch, W. et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut64, 894–900 (2015). ArticleCAS Google Scholar
Danese, S. et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut64, 243–249 (2015). ArticleCAS Google Scholar
Engelhardt, K.R. & Grimbacher, B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol.380, 1–18 (2014). CASPubMed Google Scholar
Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity10, 387–398 (1999). ArticleCAS Google Scholar
Pizarro, T.T. et al. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm. Bowel Dis.17, 2566–2584 (2011). Article Google Scholar
Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc.2, 541–546 (2007). ArticleCAS Google Scholar
Mahler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol.274, G544–G551 (1998). CASPubMed Google Scholar
Bleich, A. & Fox, J.G. The mammalian microbiome and its importance in laboratory animal research. ILAR J.56, 153–158 (2015). ArticleCAS Google Scholar
Laukens, D., Brinkman, B.M., Raes, J., De Vos, M. & Vandenabeele, P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev.40, 117–132 (2016). ArticleCAS Google Scholar
Podolsky, D.K., Gerken, G., Eyking, A. & Cario, E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology137, 209–220 (2009). ArticleCAS Google Scholar
Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol.8, e1000412 (2010). Article Google Scholar
Becker, C. et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut54, 950–954 (2005). ArticleCAS Google Scholar
Vowinkel, T., Kalogeris, T.J., Mori, M., Krieglstein, C.F. & Granger, D.N. Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis. Dig. Dis. Sci.49, 556–564 (2004). ArticleCAS Google Scholar
Tseng, J.C. & Kung, A.L. In vivo imaging of inflammatory phagocytes. Chem. Biol.19, 1199–1209 (2012). ArticleCAS Google Scholar
Van den Broeck, W., Derore, A. & Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods312, 12–19 (2006). ArticleCAS Google Scholar
Yu, Y.R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One11, e0150606 (2016). Article Google Scholar
Amsen, D., de Visser, K.E. & Town, T. Approaches to determine expression of inflammatory cytokines. Methods Mol. Biol.511, 107–142 (2009). ArticleCAS Google Scholar
Moolenbeek, C. & Ruitenberg, E.J. The 'Swiss roll': a simple technique for histological studies of the rodent intestine. Lab. Anim.15, 57–59 (1981). ArticleCAS Google Scholar
Cardiff, R.D., Miller, C.H. & Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc.2014, 655–658 (2014). PubMed Google Scholar
Wirtz, S., Billmeier, U., McHedlidze, T., Blumberg, R.S. & Neurath, M.F. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology141, 1875–1886 (2011). ArticleCAS Google Scholar
Becker, C., Fantini, M.C. & Neurath, M.F. High resolution colonoscopy in live mice. Nat. Protoc.1, 2900–2904 (2006). ArticleCAS Google Scholar
Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol.7, 4557–4576 (2014). PubMedPubMed Central Google Scholar
Pfeiffer, C.J. & Qiu, B.S. Effects of chronic nitric oxide synthase inhibition on TNB-induced colitis in rats. J. Pharm. Pharmacol.47, 827–832 (1995). ArticleCAS Google Scholar
Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc.2, 2307–2311 (2007). ArticleCAS Google Scholar
Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods10, 996–998 (2013). ArticleCAS Google Scholar
Huse, S.M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics15, 41 (2014). Article Google Scholar
Cooper, H.S., Murthy, S.N., Shah, R.S. & Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest.69, 238–249 (1993). CASPubMed Google Scholar