Applying the principles of stem-cell biology to cancer (original) (raw)
Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest.70, 6–22 (1994). CASPubMed Google Scholar
Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001). ArticleCASPubMed Google Scholar
Fearon, E. R., Burke, P. J., Schiffer, C. A., Zehnbauer, B. A. & Vogelstein, B. Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N. Engl. J. Med.315, 15–24 (1986). CASPubMed Google Scholar
Fialkow, P. J. et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N. Engl. J. Med.20, 468–473 (1987). Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). CASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). CASPubMed Google Scholar
Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science197, 461–463 (1977). CASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature17, 645–648 (1994). Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). Not all human breast cancer cells are equal in terms of their ability to form tumours in immunocompromised mice, and the tumorigenic subset of cells exhibits properties of cancer stem cells. The tumorigenic cell population represents a minority of cells within the tumours, but can be isolated from most of the patients studied based on a unique surface-marker expression pattern. CASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of a cancer stem cell in human brain tumours. Cancer Res.63, 5821–5828 (2003). Not all human brain cancer cells are equal in terms of their ability to proliferate in culture, and the more proliferative subset of cells exhibits markers and functions of neural stem cells. CASPubMed Google Scholar
Taipale, J. & Beachy, P. A. The hedgehog and Wnt signaling pathways in cancer. Nature411, 349–354 (2001). CASPubMed Google Scholar
Zhu, Y. & Parada, L. F. The molecular and genetic basis of neurological tumours. Nature Rev. Cancer2, 616–626 (2002). CAS Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). Haematopoietic stem-cell self-renewalin vivois dependent onBMI1, andBMI1-deficient haematopoietic stem cells do not persist into adulthood. CASPubMed Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). Proliferation of leukaemic stem cells is dependent onBMI1, andBMI1-deficient leukaemia cells fail to induce disease following transplantation. This shows that proliferation of leukaemic stem cells depends on a pathway that is also crucial for the self-renewal of normal haematopoietic stem cells. CASPubMed Google Scholar
Hemmati, H. D. et al. Pediatric brain tumor stem cells. Ann. Neurol.54, S117 (2003). Google Scholar
Salmon, S. E. et al. Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N. Engl. J. Med.298, 1321–1327 (1978). CASPubMed Google Scholar
McCulloch, E. A. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood62, 1–13 (1983). CASPubMed Google Scholar
Trott, K. R. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother. Oncol.30, 1–5 (1994). CASPubMed Google Scholar
Kummermehr, J. & Trott, K. -R. in Stem Cells (ed. Potten, C. S.) 363–399 (Academic Press, New York, 1997). Google Scholar
Bruce, W. R. & Gaag, H. V. D. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature199, 79–80 (1963). CASPubMed Google Scholar
Wodinsky, I., Swiniarski, J. & Kensler, C. J. Spleen colony studies of leukemia L1210. I. Growth kinetics of lymphocytic L1210 cells in vivo as determined by spleen colony assay. Cancer Chemother. Rep.51, 415–421 (1967). Google Scholar
Ignatova, T. N. et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia39, 193–206 (2002). PubMed Google Scholar
Knudson, A. G. Jr, Strong, L. C. & Anderson, D. E. Heredity and cancer in man. Prog. Med. Genet.9, 113–158 (1973). PubMed Google Scholar
Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D. & Dick, J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl Acad. Sci. USA94, 5320–5325 (1997). CASPubMedPubMed Central Google Scholar
Pereira, D. S. et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc. Natl Acad. Sci. USA95, 8239–8244 (1998). CASPubMedPubMed Central Google Scholar
Kelly, L. M. & Gilliland, D. G. Genetics of myeloid leukemias. Annu. Rev. Genomics Hum. Genet.3, 179–198 (2002). CASPubMed Google Scholar
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood89, 3104–3112 (1997). CASPubMed Google Scholar
Jordan, C. T. et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia14, 1777–1784 (2000). CASPubMed Google Scholar
Polakis, P. The oncogenic activation of β-catenin. Curr. Opin. Genet. Dev.9, 15–21 (1999). CASPubMed Google Scholar
Zhu, A. J. & Watt, F. M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development126, 2285–2298 (1999). CASPubMed Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). Soluble Wnt3a can promote the self-renewal of haematopoeitic stem cells in culture. CASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). Wnt/β-catenin-pathway activation promotes the self-renewal of haematopoietic stem cells in culture. CASPubMed Google Scholar
Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron22, 103–114 (1999). CASPubMed Google Scholar
Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet.31, 306–310 (2002). CASPubMed Google Scholar
Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci.6, 21–27 (2003). CASPubMed Google Scholar
Wetmore, C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr. Opin. Genet. Dev.13, 34–42 (2003). CASPubMed Google Scholar
Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med.183, 2283–2291 (1996). CASPubMed Google Scholar
Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med.6, 1278–1281 (2000). CASPubMed Google Scholar
Henrique, D. et al. Maintenance of neuroepithelial progenitor cells by δ-Notch signalling in the embryonic chick retina. Curr. Biol.7, 661–670 (1997). CASPubMed Google Scholar
Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell100, 387–390 (2000). CASPubMed Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the pten tumor suppressor gene in vivo. Science1, 1 (2001). Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). CASPubMed Google Scholar
Zurawel, R. H., Chiappa, S. A., Allen, C. & Raffel, C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res.58, 896–899 (1998). CASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999). CASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). CASPubMed Google Scholar
Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell111, 251–263 (2002). CASPubMed Google Scholar
van de Wetering,, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). References 47–49 show that the Wnt/β-catenin pathway is required to maintain the stem-cell identity of normal gut epithelial stem cells as well as colorectal cancer cells, and that it promotes the proliferation of both cell types by acting through similar downstream pathways. CAS Google Scholar
Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature359, 235–237 (1992). CASPubMed Google Scholar
Moser, A. R., Dove, W. F., Roth, K. A. & Gordon, J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol.116, 1517–1526 (1992). CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). CASPubMed Google Scholar
Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell103, 311–320 (2000). CASPubMed Google Scholar
Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood89, 3624–3635 (1997). CASPubMed Google Scholar
Van Den Berg, D. J., Sharma, A. K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood92, 3189–3202 (1998). CASPubMed Google Scholar
Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl Acad. Sci. USA100, 3422–3427 (2003). CASPubMedPubMed Central Google Scholar
Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development121, 3529–3537 (1995). CASPubMed Google Scholar
Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development128, 1253–1264 (2001). CASPubMed Google Scholar
Yoshikawa, Y., Fujimori, T., McMahon, A. P. & Takada, S. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev. Biol.183, 234–242 (1997). CASPubMed Google Scholar
Chung, E. J. et al. Regulation of leukemic cell adhesion, proliferation, and survival by β-catenin. Blood100, 982–990 (2002). CASPubMed Google Scholar
Qiang, Y. W., Endo, Y., Rubin, J. S. & Rudikoff, S. Wnt signaling in B-cell neoplasia. Oncogene22, 1536–1545 (2003). CASPubMed Google Scholar
van Kemenade, F. J. et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood97, 3896–3901 (2001). CASPubMed Google Scholar
Visser, H. P. et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol.112, 950–958 (2001). CASPubMed Google Scholar
Ohta, H. et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med.195, 759–770 (2002). CASPubMedPubMed Central Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). CASPubMed Google Scholar
Bea, S. et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res.61, 2409–2412 (2001). CASPubMed Google Scholar
Alkema, M. J., Jacobs, H., van Lohuizen, M. & Berns, A. Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene15, 899–910 (1997). CASPubMed Google Scholar
Haupt, Y., Bath, M. L., Harris, A. W. & Adams, J. M. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene8, 3161–3164 (1993). CASPubMed Google Scholar
van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev.8, 757–769 (1994). CASPubMed Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). CASPubMed Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2790 (1999). CASPubMedPubMed Central Google Scholar
Lessard, J., Baban, S. & Sauvageau, G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood91, 1216–1224 (1998). CASPubMed Google Scholar
Jacobs, J. J. L. & Lohuizen, M. V. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim. Biophys. Acta1602, 151–161 (2002). CASPubMed Google Scholar
Chaudhary, P. M. & Roninson, I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell66, 85–94 (1991). CASPubMed Google Scholar
Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med.7, 1028–1034 (2001). CASPubMed Google Scholar
Pallis, M. & Russell, N. P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood95, 2897–2904 (2000). CASPubMed Google Scholar
Johnstone, R. W., Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood93, 1075–1085 (1999). CASPubMed Google Scholar
Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature406, 536–540 (2000). CASPubMed Google Scholar
Perou, C. M. et al. Molecular portraits of human breast tumours. Nature406, 747–752 (2000). CASPubMed Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). CASPubMed Google Scholar
Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415, 436–442 (2002). CASPubMed Google Scholar
Shipp, M. A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med.8, 68–74 (2002). CASPubMed Google Scholar
Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA99, 16220–16225 (2002). Shows that it is possible to identify therapeutic agents that kill leukaemic stem cells but not normal haematopoietic stem cells. CASPubMedPubMed Central Google Scholar
Stephenson, W. T., Poirier, S. M., Rubin, L. & Einhorn, L. H. Evaluation of reproductive capacity in germ-cell tumor patients following treatment with cisplatin, etoposide, and bleomycin. J. Clin. Oncol.13, 2278–2280 (1995). CASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). References 30, 45, 46 and 85 show that the WNT/ β-catenin pathway regulates the self-renewal of normal epidermal stem cells and that mutations that over-activate this pathway lead to the formation of tumours in the epidermis. CASPubMed Google Scholar
Cui, H., Meng, Y. & Bulleit, R. F. Inhibition of glycogen synthase kinase 3β activity regulates proliferation of cultured cerebellar granule cells. Brain Res. Dev. Brain Res.111, 177–188 (1998). CASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). CASPubMed Google Scholar
Chiang, C. et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol.205, 1–9 (1999). CASPubMed Google Scholar
Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272, 1668–1671 (1996). CASPubMed Google Scholar
Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science276, 817–821 (1997). CASPubMed Google Scholar
Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature389, 876–881 (1997). CASPubMed Google Scholar
Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res.57, 842–845 (1997). CASPubMed Google Scholar
Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res.57, 2085–2088 (1997). CASPubMed Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997). CASPubMed Google Scholar
Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer2, 361–327 (2002). CAS Google Scholar
Chepko, G. & Dickson, R. B. Ultrastructure of the putative stem cell niche in rat mammary epithelium. Tissue Cell35, 83–93 (2003). CASPubMed Google Scholar
Jhappan, C. et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev.6, 345–355 (1992). CASPubMed Google Scholar
Duerr, E. M. et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene16, 2259–2264 (1998). CASPubMed Google Scholar
Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nature Rev. Cancer3, 434–443 (2003). CAS Google Scholar
Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108, 837–847 (2002). CASPubMed Google Scholar
Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a–Arf: progress and puzzles. Curr. Opin. Genet. Dev.13, 77–83 (2003). CASPubMed Google Scholar
Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res.48, 1996–2004 (1988). CASPubMed Google Scholar
Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science297, 102–104 (2002). Even a transient loss of MYC function can lead to an irreversible loss of neoplastic cells. This is consistent with the idea that MYC is required to maintain the state of cancer stem cells, much as it would be expected to be required for normal stem-cell self-renewal. So, targeting pathways that are required for maintenance of stem-cell identity might be used to convert malignancies into benign tumours. CASPubMed Google Scholar