Peroxisome-proliferator-activated receptors and cancers: complex stories (original) (raw)
A unified nomenclature system for the nuclear receptor superfamily. Cell97, 161–163 (1999).
Kersten, S. & Wahli, W. Peroxisome proliferator activated receptor agonists. EXS89, 141–151 (2000). CASPubMed Google Scholar
Tan, N. S. et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol. Cell. Biol.22, 5114–5127 (2002). This paper addresses the question of the role of fatty-acid-binding proteins in the cytoplasmic transport and nuclear delivery of PPAR ligands, which are hydrophobic molecules, to their cognate nuclear receptor. ArticleCASPubMedPubMed Central Google Scholar
Surapureddi, S. et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor α-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc. Natl Acad. Sci. USA99, 11836–11841 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mueller, E. et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor γ isoforms. J. Biol. Chem.277, 41925–41930 (2002). ArticleCASPubMed Google Scholar
Krogsdam, A. M. et al. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation. Biochem. J.363, 157–165 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shi, Y., Hon, M. & Evans, R. M. The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proc. Natl Acad. Sci. USA99, 2613–2618 (2002). This work indicates that PPARβ/δ interacts with co-repressors and competes with PPARα and PPARγ on PPAR response elements. PPARβ/δ could therefore act as a regulator of the expression of PPAR target genes, either through transcriptional activation or through competition with the two other PPAR isotypes and transcriptional repression. ArticleCASPubMedPubMed Central Google Scholar
Dowell, P. et al. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor α interacting protein. J. Biol. Chem.274, 15901–15907 (1999). ArticleCASPubMed Google Scholar
Desvergne, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev.20, 649–688 (1999). CASPubMed Google Scholar
Di-Poi, N., Tan, N. S., Michalik, L., Wahli, W. & Desvergne, B. Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell10, 721–733 (2002). First description of PPARβ/δ target genes, showing that PPARβ/δ controls the AKT1 survival pathway in keratinocytes. This paper presents a model for the anti-apoptotic role of PPARβ/δ. ArticleCASPubMed Google Scholar
Michalik, L. et al. PPAR expression and function during vertebrate development. Int. J. Dev. Biol.46, 105–114 (2002). CASPubMed Google Scholar
Michalik, L., Desvergne, B. & Wahli W. Peroxisome proliferator-activated receptors β/δ: emerging roles for a previously neglected third family member. Curr. Opin. Lipidol.14, 129–135 (2003). ArticleCASPubMed Google Scholar
Lock, E. A., Mitchell, A. M. & Elcombe, C. R. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu. Rev. Pharmacol. Toxicol.29, 145–163 (1989). ArticleCASPubMed Google Scholar
Vanden Heuvel, J. P. et al. Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643. Toxicol. Appl. Pharmacol.188, 185–198 (2003). ArticleCASPubMed Google Scholar
Corton, J. C., Lapinskas, P. J. & Gonzalez, F. J. Central role of PPARα in the mechanism of action of hepatocarcinogenic peroxisome proliferators. Mutat. Res.448, 139–151 (2000). ArticleCASPubMed Google Scholar
Boitier, E., Gautier, J. C. & Roberts, R. Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models: relevance for human health and disease. Comp. Hepatol.2, 3 (2003). ArticlePubMedPubMed Central Google Scholar
Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature347, 645–650 (1990). ArticleCASPubMed Google Scholar
Lee, S. S. et al. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol.15, 3012–3022 (1995). This paper describes the phenotype of thePparα-null mice, a clear demonstration that this receptor is the one mediating the effects of PP in rodent liver. ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M., Cattley, R. C. & Gonzalez, F. J. Role of PPAR α in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis18, 2029–2033 (1997). ArticleCASPubMed Google Scholar
Marsman, D. S., Cattley, R. C., Conway, J. G. & Popp, J. A. Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) in rats. Cancer Res.48, 6739–6744 (1988). CASPubMed Google Scholar
Isenberg, J. S., Kolaja, K. L., Ayoubi, S. A., Watkins, J. B. 3rd & Klaunig, J. E. Inhibition of WY-14,643 induced hepatic lesion growth in mice by rotenone. Carcinogenesis18, 1511–1519 (1997). ArticleCASPubMed Google Scholar
Peters, J. M. et al. Role of peroxisome proliferator-activated receptor α in altered cell cycle regulation in mouse liver. Carcinogenesis19, 1989–1994 (1998). ArticleCASPubMed Google Scholar
Bayly, A. C., Roberts, R. A. & Dive, C. Suppression of liver cell apoptosis in vitro by the non-genotoxic hepatocarcinogen and peroxisome proliferator nafenopin. J. Cell Biol.125, 197–203 (1994). ArticleCASPubMed Google Scholar
Oberhammer, F. A. & Qin, H. M. Effect of three tumour promoters on the stability of hepatocyte cultures and apoptosis after transforming growth factor-β 1. Carcinogenesis16, 1363–1371 (1995). ArticleCASPubMed Google Scholar
Gill, J. H., James, N. H., Roberts, R. A. & Dive, C. The non-genotoxic hepatocarcinogen nafenopin suppresses rodent hepatocyte apoptosis induced by TGFβ1, DNA damage and Fas. Carcinogenesis19, 299–304 (1998). ArticleCASPubMed Google Scholar
Gill, J. H., Brickell, P., Dive, C. & Roberts, R. A. The rodent non-genotoxic hepatocarcinogen nafenopin suppresses apoptosis preferentially in non-cycling hepatocytes but also elevates CDK4, a cell cycle progression factor. Carcinogenesis19, 1743–1747 (1998). ArticleCASPubMed Google Scholar
Roberts, R. A. Non-genotoxic hepatocarcinogenesis: suppression of apoptosis by peroxisome proliferators. Ann. NY Acad. Sci.804, 588–611 (1996). ArticleCASPubMed Google Scholar
Roberts, R. A., James, N. H., Woodyatt, N. J., Macdonald, N. & Tugwood, J. D. Evidence for the suppression of apoptosis by the peroxisome proliferator activated receptor α (PPAR α). Carcinogenesis19, 43–48 (1998). ArticleCASPubMed Google Scholar
Reddy, J. K. & Rao, M. S. Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis. Mutat. Res.214, 63–68 (1989). ArticleCASPubMed Google Scholar
Yeldandi, A. V., Rao, M. S. & Reddy, J. K. Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat. Res.448, 159–177 (2000). ArticleCASPubMed Google Scholar
Rusyn, I., Rose, M. L., Bojes, H. K. & Thurman, R. G. Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. Antioxid. Redox Signal.2, 607–621 (2000). ArticleCASPubMed Google Scholar
Rusyn, I. et al. Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Mol. Pharmacol.59, 744–750 (2001). ArticleCASPubMed Google Scholar
Ashby, J. et al. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum. Exp. Toxicol.13, S1–S117 (1994). ArticlePubMed Google Scholar
Cattley, R. C. et al. Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul. Toxicol. Pharmacol.27, 47–60 (1998). ArticleCASPubMed Google Scholar
Bentley, P. et al. Hepatic peroxisome proliferation in rodents and its significance for humans. Food Chem. Toxicol.31, 857–907 (1993). ArticleCASPubMed Google Scholar
Scotto, C., Keller, J. M., Schohn, H. & Dauca, M. Comparative effects of clofibrate on peroxisomal enzymes of human (Hep EBNA2) and rat (FaO) hepatoma cell lines. Eur. J. Cell Biol.66, 375–381 (1995). CASPubMed Google Scholar
Palmer, C. N., Hsu, M. H., Griffin, K. J., Raucy, J. L. & Johnson, E. F. Peroxisome proliferator activated receptor-α expression in human liver. Mol. Pharmacol.53, 14–22 (1998). ArticleCASPubMed Google Scholar
Tugwood, J. D., Aldridge, T. C., Lambe, K. G., Macdonald, N. & Woodyatt, N. J. Peroxisome proliferator-activated receptors: structures and function. Ann. NY Acad. Sci.804, 252–265 (1996). ArticleCASPubMed Google Scholar
Maloney, E. K. & Waxman, D. J. _trans_-Activation of PPARα and PPARγ by structurally diverse environmental chemicals. Toxicol. Appl. Pharmacol.161, 209–218 (1999). ArticleCASPubMed Google Scholar
Woodyatt, N. J., Lambe, K. G., Myers, K. A., Tugwood, J. D. & Roberts, R. A. The peroxisome proliferator (PP) response element upstream of the human acyl CoA oxidase gene is inactive among a sample human population: significance for species differences in response to PPs. Carcinogenesis20, 369–372 (1999). ArticleCASPubMed Google Scholar
Lambe, K. G., Woodyatt, N. J., Macdonald, N., Chevalier, S. & Roberts, R. A. Species differences in sequence and activity of the peroxisome proliferator response element (PPRE) within the acyl CoA oxidase gene promoter. Toxicol. Lett.110, 119–127 (1999). ArticleCASPubMed Google Scholar
Lake, B. G., Phillips, J. C., Linnell, J. C. & Gangolli, S. D. The in vitro hydrolysis of some phthalate diesters by hepatic and intestinal preparations from various species. Toxicol. Appl. Pharmacol.39, 239–248 (1977). ArticleCASPubMed Google Scholar
Rhodes, C. et al. Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl) phthalate (DEHP) in rats and marmosets: extrapolation of effects in rodents to man. Environ. Health Perspect.65, 299–307 (1986). CASPubMedPubMed Central Google Scholar
Anderson, W. A., Castle, L., Scotter, M. J., Massey, R. C. & Springall, C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit. Contam.18, 1068–1074 (2001). ArticleCASPubMed Google Scholar
Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med.4, 1046–1052 (1998). ArticleCASPubMed Google Scholar
Tanaka, T. et al. Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res.61, 2424–2428 (2001). CASPubMed Google Scholar
Osawa, E. et al. Peroxisome proliferator-activated receptor γ ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology124, 361–367 (2003). ArticleCASPubMed Google Scholar
Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nature Med.4, 1058–1061 (1998). ArticleCASPubMed Google Scholar
Lefebvre, A. M. et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nature Med.4, 1053–1057 (1998). ArticleCASPubMed Google Scholar
Wasan, H. S., Novelli, M., Bee, J. & Bodmer, W. F. Dietary fat influences on polyp phenotype in multiple intestinal neoplasia mice. Proc. Natl Acad. Sci. USA94, 3308–3313 (1997). ArticleCASPubMedPubMed Central Google Scholar
Girnun, G. D. et al. APC-dependent suppression of colon carcinogenesis by PPARγ. Proc. Natl Acad. Sci. USA99, 13771–13776 (2002). Paper that addresses the controversial role of Pparγ activation in colon carcinogenesis. The data presented indicate that the consequence of the activation of Pparγ on the development of colon tumours might depend on the existence of a previous mutation event in the Apc–β-catenin pathway. ArticleCASPubMedPubMed Central Google Scholar
Girnun, G. D. & Spiegelman, B. M. PPARγ ligands: taking Ppart in chemoprevention. Gastroenterology124, 564–567 (2003). ArticleCASPubMed Google Scholar
Mueller, E. et al. Terminal differentiation of human breast cancer through PPARγ. Mol. Cell1, 465–470 (1998). ArticleCASPubMed Google Scholar
Elstner, E. et al. Ligands for peroxisome proliferator-activated receptor γ and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl Acad. Sci. USA95, 8806–8811 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mehta, R. G., Williamson, E., Patel, M. K. & Koeffler, H. P. A ligand of peroxisome proliferator-activated receptor γ, retinoids, and prevention of preneoplastic mammary lesions. J. Natl Cancer Inst.92, 418–423 (2000). ArticleCASPubMed Google Scholar
Suh, N. et al. A new ligand for the peroxisome proliferator-activated receptor-γ (PPAR-γ), GW7845, inhibits rat mammary carcinogenesis. Cancer Res.59, 5671–5673 (1999). CASPubMed Google Scholar
Clay, C. E., Monjazeb, A., Thorburn, J., Chilton, F. H. & High, K. P. 15-Deoxy-δ12,14-prostaglandin J2-induced apoptosis does not require PPARγ in breast cancer cells. J. Lipid Res.43, 1818–1828 (2002). ArticleCASPubMed Google Scholar
Kubota, T. et al. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res.58, 3344–3352 (1998). CASPubMed Google Scholar
Mueller, E. et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl Acad. Sci. USA97, 10990–10995 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hisatake, J. I. et al. Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor γ in human prostate cancer. Cancer Res.60, 5494–5498 (2000). CASPubMed Google Scholar
Aldred, M. A. et al. Peroxisome proliferator-activated receptor γ is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene22, 3412–3416 (2003). ArticleCASPubMed Google Scholar
Altiok, S., Xu, M. & Spiegelman, B. M. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev.11, 1987–1998 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shao, D. & Lazar, M. A. Peroxisome proliferator activated receptor γ, CCAAT/enhancer-binding protein α, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem.272, 21473–21478 (1997). ArticleCASPubMed Google Scholar
Heaney, A. P., Fernando, M. & Melmed, S. PPAR-γ receptor ligands: novel therapy for pituitary adenomas. J. Clin. Invest.111, 1381–1388 (2003). ArticleCASPubMedPubMed Central Google Scholar
Morrison, R. F. & Farmer, S. R. Role of PPARγ in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J. Biol. Chem.274, 17088–17097 (1999). ArticleCASPubMed Google Scholar
Clay, C. E., Atsumi, G. I., High, K. P. & Chilton, F. H. Early de novo gene expression is required for 15-deoxy-Δ 12,14-prostaglandin J2-induced apoptosis in breast cancer cells. J. Biol. Chem.276, 47131–47135 (2001). ArticleCASPubMed Google Scholar
Kitamura, S. et al. PPARγ agonists inhibit cell growth and suppress the expression of cyclin D1 and EGF-like growth factors in _ras_-transformed rat intestinal epithelial cells. Int. J. Cancer94, 335–342 (2001). ArticleCASPubMed Google Scholar
Toyota, M. et al. Peroxisome proliferator-activated receptor γ reduces the growth rate of pancreatic cancer cells through the reduction of cyclin D1. Life Sci.70, 1565–1575 (2002). ArticleCASPubMed Google Scholar
Qin, C. et al. Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells. Cancer Res.63, 958–964 (2003). CASPubMed Google Scholar
Wang, C. et al. Inhibition of cellular proliferation through IκB kinase-independent and peroxisome proliferator-activated receptor γ-dependent repression of cyclin D1. Mol. Cell. Biol.21, 3057–3070 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gupta, R. A., Brockman, J. A., Sarraf, P., Willson, T. M. & DuBois, R. N. Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells. J. Biol. Chem.276, 29681–29687 (2001). ArticleCASPubMed Google Scholar
Gupta, R. A. et al. Peroxisome proliferator-activated receptor γ and transforming growth factor-β pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J. Biol. Chem.278, 7431–7438 (2003). ArticleCASPubMed Google Scholar
Chen, G. G. et al. Apoptosis induced by activation of peroxisome-proliferator activated receptor-γ is associated with Bcl-2 and NF-κB in human colon cancer. Life Sci.70, 2631–2646 (2002). ArticleCASPubMed Google Scholar
Satoh, T. et al. Activation of peroxisome proliferator-activated receptor-γ stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene21, 2171–2180 (2002). ArticleCASPubMed Google Scholar
Patel, L. et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol.11, 764–768 (2001). ArticleCASPubMed Google Scholar
Farrow, B. & Evers, B. M. Activation of PPARγ increases PTEN expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun.301, 50–53 (2003). ArticleCASPubMed Google Scholar
Xin, X., Yang, S., Kowalski, J. & Gerritsen, M. E. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem.274, 9116–9121 (1999). ArticleCASPubMed Google Scholar
Tontonoz, P. et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl Acad. Sci. USA94, 237–241 (1997). ArticleCASPubMedPubMed Central Google Scholar
Demetri, G. D. et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA96, 3951–3956 (1999). Paper that describes the striking beneficial effects that are observed after PPARγ agonists are given to treat patients suffering from liposarcoma. These data indicate that troglitazone is a promising drug in the treatment of certain tumours. ArticleCASPubMedPubMed Central Google Scholar
Theocharis, S. et al. Expression of peroxisome proliferator activated receptor-γ in non-small cell lung carcinoma: correlation with histological type and grade. Lung Cancer36, 249–255 (2002). ArticlePubMed Google Scholar
Gupta, R. A. & Dubois, R. N. Controversy: PPARγ as a target for treatment of colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol.283, G266–G269 (2002). ArticleCASPubMed Google Scholar
Dreyer, C. et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell68, 879–887 (1992). ArticleCASPubMed Google Scholar
Kliewer, S. A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA91, 7355–7359 (1994). ArticleCASPubMedPubMed Central Google Scholar
Amri, E. Z., Bonino, F., Ailhaud, G., Abumrad, N. A. & Grimaldi, P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J. Biol. Chem.270, 2367–2371 (1995). ArticleCASPubMed Google Scholar
Matsuo, H. & Strauss, J. F. 3rd. Peroxisome proliferators and retinoids affect JEG-3 choriocarcinoma cell function. Endocrinology135, 1135–1145 (1994). ArticleCASPubMed Google Scholar
Jow, L. & Mukherjee, R. The human peroxisome proliferator-activated receptor (PPAR) subtype NUC1 represses the activation of hPPAR α and thyroid hormone receptors. J. Biol. Chem.270, 3836–3840 (1995). ArticleCASPubMed Google Scholar
He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell99, 335–345 (1999). Important report on the identification of PPARβ/δ as a potential target of the APC–β-catenin tumour-suppressor pathway. This paper also indicates that the activity COX2 in colon tumours might provide PPAR ligands. ArticleCASPubMedPubMed Central Google Scholar
Shao, J., Sheng, H. & DuBois, R. N. Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res.62, 3282–3288 (2002). CASPubMed Google Scholar
Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer. Proc. Natl Acad. Sci. USA97, 13275–13280 (2000). ArticleCASPubMedPubMed Central Google Scholar
Park, B. H., Vogelstein, B. & Kinzler, K. W. Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells. Proc. Natl Acad. Sci. USA98, 2598–2603 (2001). Based on a model of grafts usingPPARbβ/δwild-type or null cells, this paper shows that PPARβ/δ activity can affect tumorigenesis and indicates that PPARβ/δ inhibitors could inhibit tumour growth. ArticleCASPubMedPubMed Central Google Scholar
Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA99, 303–308 (2002). ArticleCASPubMed Google Scholar
Jaeckel, E. C. et al. Correlation of expression of cyclooxygenase-2, vascular endothelial growth factor, and peroxisome proliferator-activated receptor δ with head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg.127, 1253–1259 (2001). ArticleCASPubMed Google Scholar
Tong, B. J. et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-δ in human endometrial adenocarcinoma. Neoplasia2, 483–490 (2000). ArticleCASPubMedPubMed Central Google Scholar
Suchanek, K. M., May, F. J., Lee, W. J., Holman, N. A. & Roberts-Thomson, S. J. Peroxisome proliferator-activated receptor β expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin. Int. J. Biochem. Cell Biol.34, 1051–1058 (2002). ArticleCASPubMed Google Scholar
Michalik, L. et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)α and PPARβ mutant mice. J. Cell Biol.154, 799–814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol.20, 5119–5128 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hao, C. M., Redha, R., Morrow, J. & Breyer, M. D. Peroxisome proliferator-activated receptor δ activation promotes cell survival following hypertonic stress. J. Biol. Chem.277, 21341–21345 (2002). ArticleCASPubMed Google Scholar
Hatae, T., Wada, M., Yokoyama, C., Shimonishi, M. & Tanabe, T. Prostacyclin-dependent apoptosis mediated by PPAR δ. J. Biol. Chem.276, 46260–46267 (2001). ArticleCASPubMed Google Scholar
Hellemans, K. et al. Peroxisome proliferator-activated receptor-β signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology124, 184–201 (2003). ArticleCASPubMed Google Scholar
Zhang, J. et al. Peroxisome proliferator-activated receptor δ is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells. J. Biol. Chem.277, 11505–11512 (2002). ArticleCASPubMed Google Scholar
Vosper, H. et al. The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J. Biol. Chem.276, 44258–44265 (2001). ArticleCASPubMed Google Scholar
Saluja, I., Granneman, J. G. & Skoff, R. P. PPAR δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia33, 191–204 (2001). ArticleCASPubMed Google Scholar
Dannenberg, A. J. & DuBois, R. N. COX–2. A new target for cancer prevention and treatment (Karger, New Brunswick, 2003). Google Scholar
Purdue, P. E. & Lazarow, P. B. Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol.17, 701–752 (2001). ArticleCASPubMed Google Scholar
Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature405, 421–424 (2000). ArticleCASPubMed Google Scholar
Deeb, S. S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genet.20, 284–287 (1998). ArticleCASPubMed Google Scholar
Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, C. R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med.339, 953–959 (1998). ArticleCASPubMed Google Scholar
Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature402, 880–883 (1999). ArticleCASPubMed Google Scholar
Palakurthi, S. S., Aktas, H., Grubissich, L. M., Mortensen, R. M. & Halperin, J. A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res.61, 6213–6218 (2001). CASPubMed Google Scholar
Baek, S. J., Wilson, L. C., Hsi, L. C. & Eling, T. E. Troglitazone, a peroxisome proliferator-activated receptor γ (PPAR γ) ligand, selectively induces the early growth response-1 gene independently of PPAR γ. A novel mechanism for its anti-tumorigenic activity. J. Biol. Chem.278, 5845–5853 (2003). ArticleCASPubMed Google Scholar
Sarraf, P. et al. Loss-of-function mutations in PPAR γ associated with human colon cancer. Mol. Cell3, 799–804 (1999). ArticleCASPubMed Google Scholar
Kroll, T. G. et al. PAX8–PPARγ1 fusion oncogene in human thyroid carcinoma. Science289, 1357–1360 (2000). ArticleCASPubMed Google Scholar
Marques, A. R. et al. Expression of PAX8–PPAR γ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.87, 3947–3952 (2002). CASPubMed Google Scholar
Nikiforova, M. N. et al. RAS point mutations and PAX8–PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab.88, 2318–2326 (2003). ArticleCASPubMed Google Scholar
Cheung, L. et al. Detection of the PAX8–PPAR γ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.88, 354–357 (2003). ArticleCASPubMed Google Scholar
Ikezoe, T. et al. Mutational analysis of the peroxisome proliferator-activated receptor γ gene in human malignancies. Cancer Res.61, 5307–5310 (2001). CASPubMed Google Scholar
Brockman, J. A., Gupta, R. A. & Dubois, R. N. Activation of PPARγ leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology115, 1049–1055 (1998). ArticleCASPubMed Google Scholar
Asou, H. et al. Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activated receptor γ, and retinoids. Int. J. Oncol.15, 1027–1031 (1999). CASPubMed Google Scholar
Han, S. W., Greene, M. E., Pitts, J., Wada, R. K. & Sidell, N. Novel expression and function of peroxisome proliferator-activated receptor γ (PPARγ) in human neuroblastoma cells. Clin. Cancer Res.7, 98–104 (2001). CASPubMed Google Scholar
Koga, H. et al. Involvement of p21(WAF1/Cip1), p27(Kip1), and p18(INK4c) in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology33, 1087–1097 (2001). ArticleCASPubMed Google Scholar
Wakino, S. et al. Peroxisome proliferator-activated receptor γ ligands inhibit retinoblastoma phosphorylation and G1→S transition in vascular smooth muscle cells. J. Biol. Chem.275, 22435–22441 (2000). ArticleCASPubMed Google Scholar
Takahashi, N. et al. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett.455, 135–139 (1999). ArticleCASPubMed Google Scholar
Ohta, K., Endo, T., Haraguchi, K., Hershman, J. M. & Onaya, T. Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J. Clin. Endocrinol. Metab.86, 2170–2177 (2001). CASPubMed Google Scholar
Houston, K. D. et al. Inhibition of proliferation and estrogen receptor signaling by peroxisome proliferator-activated receptor γ ligands in uterine leiomyoma. Cancer Res.63, 1221–1227 (2003). CASPubMed Google Scholar
Roth, A. D. et al. PPAR γ activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J. Neurosci. Res.72, 425–435 (2003). ArticleCASPubMed Google Scholar
Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell93, 241–252 (1998). ArticleCASPubMed Google Scholar
Chang, T. H. & Szabo, E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor γ in non-small cell lung cancer. Cancer Res.60, 1129–1138 (2000). CASPubMed Google Scholar
Yang, W. L. & Frucht, H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis22, 1379–1383 (2001). ArticleCASPubMed Google Scholar
Chinetti, G. et al. Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem.273, 25573–25580 (1998). ArticleCASPubMed Google Scholar
Padilla, J., Kaur, K., Cao, H. J., Smith, T. J. & Phipps, R. P. Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells. J. Immunol.165, 6941–6948 (2000). ArticleCASPubMed Google Scholar
Toyoda, M. et al. A ligand for peroxisome proliferator activated receptor γ inhibits cell growth and induces apoptosis in human liver cancer cells. Gut50, 563–567 (2002). ArticleCASPubMedPubMed Central Google Scholar
Keelan, J. A. et al. 15-Deoxy-Δ(12,14)-prostaglandin J(2), a ligand for peroxisome proliferator-activated receptor-γ, induces apoptosis in JEG3 choriocarcinoma cells. Biochem. Biophys. Res. Commun.262, 579–585 (1999). ArticleCASPubMed Google Scholar
Okuno, A. et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest.101, 1354–1361 (1998). ArticleCASPubMedPubMed Central Google Scholar
Herbert, B. S. et al. A peroxisome proliferator-activated receptor-γ agonist and the p53 rescue drug CP-31398 inhibit the spontaneous immortalization of breast epithelial cells. Cancer Res.63, 1914–1919 (2003). CASPubMed Google Scholar