Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer (original) (raw)
Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem.73, 417–435 (2004). CASPubMed Google Scholar
Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338, 17–31 (2004). An insightful phylogenetic analysis of HDACs. CASPubMed Google Scholar
Leipe, D. D. & Landsman, D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res.25, 3693–3997 (1997). CASPubMedPubMed Central Google Scholar
Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature423, 145–150 (2003). CASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). CAS Google Scholar
Turner, B. M. Cellular memory and the histone code. Cell111, 285–291 (2002). References 6 and 7 contain the proposal and one of the counter-proposals of the histone code. CASPubMed Google Scholar
Turner, B. M. Reading signals on the nucleosome with a new nomenclature for modified histones. Nature Struct. Mol. Biol.12, 110–112 (2005). CAS Google Scholar
Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA51, 786–794 (1964). CASPubMed Google Scholar
Polo, S. E. & Almouzni, G. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett.220, 1–9 (2005). CASPubMed Google Scholar
Vidanes, G. M., Bonilla, C. Y. & Toczyski, D. P. Complicated tails: histone modifications and the DNA damage response. Cell121, 973–976 (2005). CASPubMed Google Scholar
Weinreich, M., Palacios DeBeer, M. A. & Fox, C. A. The activities of eukaryotic replication origins in chromatin. Biochim. Biophys. Acta1677, 142–157 (2004). CASPubMed Google Scholar
Zhang, J., Xu, F., Hashimshony, T., Keshet, I. & Cedar, H. Establishment of transcriptional competence in early and late S phase. Nature420, 198–202 (2002). CASPubMed Google Scholar
Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol.21, 255–261 (2003). CAS Google Scholar
Qiang, L., Xiao, H., Campos, E. I., Ho, V. C. & Li, G. Development of a PAN-specific, affinity-purified anti-acetylated lysine antibody for detection, identification, isolation, and intracellular localization of acetylated protein. J. Immunoassay Immunochem.26, 13–23 (2005). CASPubMed Google Scholar
Ronzoni, S., Faretta, M., Ballarini, M., Pelicci, P. & Minucci, S. New method to detect histone acetylation levels by flow cytometry. Cytometry A66, 52–61 (2005). PubMed Google Scholar
Caron, C., Boyault, C. & Khochbin, S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays27, 408–415 (2005). CASPubMed Google Scholar
Giandomenico, V., Simonsson, M., Grönroos, E. & Ericsson, J. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol.23, 2587–2599 (2003). CASPubMedPubMed Central Google Scholar
Grönroos, E., Hellman, U., Heldin, C. H. & Ericsson, J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell10, 483–493 (2002). PubMed Google Scholar
Jin, Y. H. et al. Transforming growth factor-β stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J. Biol. Chem.279, 29409–29417 (2004). CASPubMed Google Scholar
Rausa, F. M., Hughes, D. E. & Costa, R. H. Stability of the hepatocyte nuclear factor 6 transcription factor requires acetylation by the CREB-binding protein coactivator. J. Biol. Chem.279, 43070–43076 (2004). CASPubMed Google Scholar
Munshi, N et al. Coordination of a transcriptional switch by HMGI(Y) acetylation. Science293, 1133–1136 (2001). CASPubMed Google Scholar
Yuan, Z. L., Guan, Y. J., Chatterjee, D. & Chin, Y. E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science307, 269–273 (2005). CASPubMed Google Scholar
Wang, R., Cherukuri, P. & Luo, J. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J. Biol. Chem.280, 11528–11534 (2005). CASPubMed Google Scholar
Jeong, J. W. et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell111, 709–7020 (2002). CASPubMed Google Scholar
Bilton, R. et al. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1α and is not induced by hypoxia or HIF. J. Biol. Chem.280, 31132–31140 (2005). CASPubMed Google Scholar
Cohen HY, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell13, 627–638 (2004). Cytoplasmic role for acetylation of Ku70 in apoptosis. CASPubMed Google Scholar
Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science305, 390–392 (2004). CASPubMed Google Scholar
Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J.22, 5551–5560 (2003). CASPubMedPubMed Central Google Scholar
Bannister, A. J., Miska, E. A., Görlich, D. & Kouzarides, T. Acetylation of importin-α nuclear import factors by CBP/p300. Curr. Biol.10, 467–470 (2000). CASPubMed Google Scholar
Caillaud, A. et al. Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding. J. Biol. Chem.277, 49417–49421 (2002). CASPubMed Google Scholar
Choi, C. H., Hiromura, M. & Usheva, A. Transcription factor IIB acetylates itself to regulate transcription. Nature424, 965–969 (2003). CASPubMed Google Scholar
Hasan, S. et al. Acetylation regulates the DNA end-trimming activity of DNA polymerase β. Mol. Cell10, 1213–1222 (2002). CASPubMed Google Scholar
Hasan, S. et al. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol. Cell7, 1221–1231 (2001). CASPubMed Google Scholar
Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer4, 793–805 (2004). CAS Google Scholar
Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol.5, 392–401 (2004). CAS Google Scholar
Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell115, 727–738 (2003). CASPubMed Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). Role of acetylation in the control of the chaperone function of HSP90. CASPubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002). Genetic demonstration that HDAC1 is essential for proliferation in mammals. CASPubMedPubMed Central Google Scholar
Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell110, 479–488 (2002). CASPubMedPubMed Central Google Scholar
Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell119, 555–566 (2004). CASPubMed Google Scholar
Minucci, S., Nervi, C., Lo Coco, F. & Pelicci, P. G. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene20, 3110–3115 (2001). CASPubMed Google Scholar
Warrell, R. P. et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med.324, 1385–1393 (1991). PubMed Google Scholar
Minucci, S. & Pelicci, P. G. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell Dev. Biol.10, 215–225 (1999). CASPubMed Google Scholar
Lin, R. J., Egan, D. A. & Evans, R. M. Molecular genetics of acute promyelocytic leukemia. Trends Genet.15, 179–184 (1999). CASPubMed Google Scholar
Lin, R. J. & Evans, R. M. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell5, 821–830 (2000). CASPubMed Google Scholar
Minucci, S. et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell5, 811–820 (2000). CASPubMed Google Scholar
Di Croce, L. et al. Altered epigenetic signals in human disease. Cancer Biol. Ther.3, 831–837 (2004). CASPubMed Google Scholar
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295, 1079–1082 (2002). CASPubMed Google Scholar
He, L. Z. et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest.108, 1321–1330 (2001). CASPubMedPubMed Central Google Scholar
Brown, D. et al. A _PMLRAR_α transgene initiates murine acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA94, 2551–2556 (1997). CASPubMed Google Scholar
Grisolano, J. L., Wesselschmidt, R. L., Pelicci, P. G. & Ley, T. J. Altered myeloid development and acute leukemia in transgenic mice expressing PML–RAR α under control of cathepsin G regulatory sequences. Blood89, 376–387 (1997). CASPubMed Google Scholar
Trecca, D. et al. Analysis of p53 gene mutations in acute myeloid leukemia. Am. J. Hematol.46, 304–309 (1994). CASPubMed Google Scholar
Insinga, A., Pelicci, P. G. & Minucci, S. Leukemia-associated fusion proteins. Multiple mechanisms of action to drive cell transformation. Cell Cycle4, 67–69 (2005). CASPubMed Google Scholar
Insinga, A. et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J.23, 1144–1154 (2004). Demonstrates that deacetylation of non-histone substrates (p53) by HDACs has a role in tumorigenesis. CASPubMedPubMed Central Google Scholar
Bereshchenko, O. R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nature Genet.32, 606–613 (2002). CASPubMed Google Scholar
Eckner, R., Arany, Z., Ewen, M., Sellers, W. & Livingston, D. M. The adenovirus E1A-associated 300-kD protein exhibits properties of a transcriptional coactivator and belongs to an evolutionarily conserved family. Cold Spring Harb. Symp. Quant. Biol.59, 85–95 (1994). CASPubMed Google Scholar
Iyer, N. G., Ozdag, H. & Caldas, C. p300/CBP and cancer. Oncogene23, 4225–4231 (2004). CASPubMed Google Scholar
Kumar, R., Wang, R. A. & Bagheri-Yarmand, R. Emerging roles of MTA family members in human cancers. Semin. Oncol.30, 30–37 (2003). CASPubMed Google Scholar
Bagheri-Yarmand, R., Talukder, A. H., Wang, R. A., Vadlamudi, R. K. & Kumar, R. Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development131, 3469–3479 (2004). CASPubMed Google Scholar
Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell5, 455–463 (2004). CASPubMed Google Scholar
Toh, Y. et al. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int. J. Cancer110, 362–367 (2004). CASPubMed Google Scholar
Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet.37, 391–400 (2005). References 62 and 63 demonstrate that global histone modifications occur in cancer. CASPubMed Google Scholar
Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature435, 1262–1266 (2005). A coordinated pattern of histone modifications predicts clinical outcome in prostate cancer. CASPubMed Google Scholar
Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature429, 457–463 (2004). CASPubMed Google Scholar
Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer4, 143–153 (2004). CAS Google Scholar
Lund, A. H. & van Lohuizen, M. Epigenetics and cancer. Genes Dev.18, 2315–2335 (2004). CASPubMed Google Scholar
Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Rev. Drug Discov.1, 287–299 (2002). CAS Google Scholar
Marks, P. et al. Histone deacetylases and cancer: causes and therapies. Nature Rev. Cancer1, 194–202 (2001). CAS Google Scholar
Mai, A. et al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev.25, 261–309 (2005). CASPubMed Google Scholar
Miller, T. A., Witter, D. J. & Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem.46, 5097–5116 (2003). CASPubMed Google Scholar
Park, J. H. et al. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin. Cancer Res.10, 5271–5281 (2004). CASPubMed Google Scholar
Mai, A. et al. Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A. J. Med. Chem.46, 4826–4829 (2003). CASPubMed Google Scholar
Heltweg, B. et al. Subtype selective substrates for histone deacetylases. J. Med. Chem.47, 5235–5243 (2004). CASPubMed Google Scholar
Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA100, 4389–4394 (2003). CASPubMed Google Scholar
Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature401, 188–193 (1999). CASPubMed Google Scholar
Richon, V. M. et al. Histone deacetylase inhibitors: assays to assess effectiveness in vitro and in vivo. Methods Enzymol.376, 199–205 (2004). CASPubMed Google Scholar
Somoza, J. R. et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure (Camb)12, 1325–1334 (2004). CAS Google Scholar
Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA101, 15064–15069 (2004). References 78 and 79 show the structural analysis of mammalian HDAC8 in complex with HDACi. CASPubMed Google Scholar
Siddiqui, H., Solomon, D. A., Gunawardena, R. W., Wang, Y. & Knudsen, E. S. Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition. Mol. Cell. Biol.23, 7719–7731 (2003). CASPubMedPubMed Central Google Scholar
Glaser, K. B. et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther.2, 151–163 (2003). CASPubMed Google Scholar
Mitsiades, C. S. et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl Acad. Sci. USA101, 540–545 (2004). CASPubMed Google Scholar
Peart, M. J. et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 3697–3702 (2005). CASPubMed Google Scholar
Van Lint, C., Emiliani, S. & Verdin, E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr.5, 245–253 (1996). References 81–84 detail gene-profiling studies of the cell transcriptional response to HDACi in different model systems. The results are not always fully consistent among the different systems (the number of modulated genes varies from <5% to 20%). CASPubMed Google Scholar
Camphausen, K. et al. Enhanced radiation-induced cell killing and prolongation of gH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res.64, 316–321 (2004). CASPubMed Google Scholar
Munshi, A. et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res.11, 4912–4922 (2005). CASPubMed Google Scholar
Warrener, R. et al. Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J.17, 1550–1552 (2003). CASPubMed Google Scholar
Beamish, H., Warrener, R. & Gabrielli, B. G. Analysis of checkpoint responses to histone deacetylase inhibitors. Methods Mol. Biol.281, 245–259 (2004). CASPubMed Google Scholar
Qiu, L. et al. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell11, 2069–2083 (2000). CASPubMedPubMed Central Google Scholar
Richon, V. M., Sandhoff, T. W., Rifkind, R. A. & Marks, P. A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97, 10014–10019 (2000). CASPubMed Google Scholar
Gui, C. Y., Ngo, L., Xu, W. S, Richon, V. M. & Marks, P. A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl Acad. Sci. USA101, 1241–1246 (2004). CASPubMed Google Scholar
Varshochi, R. et al. ICI182,780 induces p21Waf1 gene transcription through releasing histone deacetylase 1 and estrogen receptor α from Sp1 sites to induce cell cycle arrest in MCF-7 breast cancer cell line. J. Biol. Chem.280, 3185–3196 (2005). CASPubMed Google Scholar
Archer, S. Y., Meng, S., Shei, A. & Hodin, R. A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl Acad. Sci. USA95, 6791–6796 (1998). CASPubMed Google Scholar
Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA101, 18030–18035 (2004). CASPubMed Google Scholar
Rosato, R. R., Almenara, J. A., Grant, S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res.63, 3637–3645 (2005). Google Scholar
Ungerstedt, J. S. et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 673–678 (2005). CASPubMed Google Scholar
Subramanian, C., Opipari, A. W., Bian, X., Castle, V. P. & Kwok, R. P. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 4842–4847 (2005). CASPubMed Google Scholar
Atadja, P. et al. Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Found. Symp.259, 249–266 (2004). CASPubMed Google Scholar
Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem.280, 26729–26734 (2005). CASPubMed Google Scholar
Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl Acad. Sci. USA102, 8567–8572 (2005). CASPubMed Google Scholar
Insinga, A. et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Med.11, 71–76 (2005). CASPubMed Google Scholar
Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med.11, 77–84 (2005). References 101 and 102 demonstrate the essential role of induction of the TRAIL pathway for the pro-apoptotic response following HDACi treatment in leukaemias. CASPubMed Google Scholar
Inoue, H. et al. Histone deacetylase inhibitors sensitize human colonic adenocarcinoma cell lines to TNF-related apoptosis inducing ligand-mediated apoptosis. Int. J. Mol. Med.9, 521–525 (2002). CASPubMed Google Scholar
Nakata, S. et al. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene23, 6261–6271 (2004). CASPubMed Google Scholar
Singh, T. R., Shankar, S. & Srivastava, R. K. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene24, 4609–4623 (2005). CASPubMed Google Scholar
Watanabe, K., Okamoto, K. & Yonehara, S. Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Differ.12, 10–18 (2005). CASPubMed Google Scholar
Rosato, R. R. & Grant, S. Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs13, 21–38 (2004). CASPubMed Google Scholar
Johnstone, R. W. & Licht, J. D. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell4, 13–18 (2003). CASPubMed Google Scholar
Drummond, D. C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol.45, 495–528 (2004). Google Scholar
Chavez-Blanco, A. et al. Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Mol. Cancer4, 22 (2005). PubMedPubMed Central Google Scholar
Kelly, W. K. et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol.23, 3923–3931 (2005). CASPubMedPubMed Central Google Scholar
Kelly, W. K. et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res.9, 3578–3588 (2003). CASPubMed Google Scholar
Ryan, Q. C. et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol.23, 3912–3922 (2005). CASPubMed Google Scholar
Piekarz, R. L. et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood98, 2865–2868 (2001). CASPubMed Google Scholar
Sandor, V. et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res.8, 718–728 (2002). CASPubMed Google Scholar
Piekarz, R. L. et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood103, 4636–4643 (2004). CASPubMed Google Scholar
Bandyopadhyay, D., Mishra, A. & Medrano, E. E. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res.64, 7706–7710 (2004). CASPubMed Google Scholar
Xiao, J. J. et al. Chemoresistance to depsipeptide FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J. Pharmacol. Exp. Ther.314, 467–475 (2005). CASPubMed Google Scholar
Pilatrino, C. et al. Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer104, 101–109 (2005). CASPubMed Google Scholar
Cameron, E. E., Bachman, K. E., Myöhänen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21, 103–107 (1999). CASPubMed Google Scholar
Rahmani, M. et al. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr–Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr–Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol. Pharmacol.67, 1166–1176 (2005). CASPubMed Google Scholar
Girdwood, D. W., Tatham, M. H. & Hay, R. T. SUMO and transcriptional regulation. Semin. Cell Dev. Biol.15, 201–210 (2004). CASPubMed Google Scholar
Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–47 (2004). CASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). CASPubMed Google Scholar
Milhem, M. et al. Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood103, 4102–4110 (2004). An initial study on the effects of HDACi on stem cells. CASPubMed Google Scholar
Guenther, M. G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev.14, 1048–1057 (2000). CASPubMedPubMed Central Google Scholar
Huang, E. Y. et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev.14, 45–54 (2000). CASPubMedPubMed Central Google Scholar
Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem.276, 6817–6824 (2001). CASPubMed Google Scholar
Jones, P. L., Sachs, L. M., Rouse, N., Wade, P. A. & Shi, Y. B. Multiple N-CoR complexes contain distinct histone deacetylases. J. Biol. Chem.276, 8807–8811 (2001). CASPubMed Google Scholar
Li, J. et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.19, 4342–4350 (2000). CASPubMedPubMed Central Google Scholar
Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell2, 851–861 (1998). CASPubMed Google Scholar
Yao, Y. L. & Yang, W. M. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. J. Biol. Chem.278, 42560–42568 (2003). CASPubMed Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). CASPubMedPubMed Central Google Scholar
Seigneurin-Berny, D. et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol.21, 8035–8044 (2001). CASPubMedPubMed Central Google Scholar
Yamagoe, S. et al. Interaction of histone acetylases and deacetylases in vivo. Mol. Cell. Biol.23, 1025–1033 (2003). CASPubMedPubMed Central Google Scholar
Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell9, 45–57 (2002). CASPubMed Google Scholar
Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet.19, 286–293 (2003). CASPubMed Google Scholar
Gore, S. D. et al. Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res.8, 963–970 (2002). CASPubMed Google Scholar
Patnaik, A. et al. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin. Cancer Res.8, 2142–2148 (2002). CASPubMed Google Scholar
Raffoux, E., Chaibi, P., Dombret, H. & Degos, L. Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica90, 986–988 (2005). CASPubMed Google Scholar
Byrd, J. C. et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood105, 959–967 (2005). CASPubMed Google Scholar