Hepatocellular carcinoma pathogenesis: from genes to environment (original) (raw)
Hertl, M. & Cosimi, A. B. Liver transplantation for malignancy. Oncologist10, 269–281 (2005). ArticlePubMed Google Scholar
American Cancer Society. Cancer Facts and FIGS 2005. American Cancer Society[online], (2005).
Anthony, P. in Pathology of the Liver (eds MacSween, R., Burt, A., Portmann, B., Ishak, K., Scheuer P. & Anthony, P.) 711–775 (Churchill Livingstone, London, New York, Sydney, Toronto, 2002). Google Scholar
Sherman, M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin. Liver Dis.25, 143–154 (2005). ArticlePubMed Google Scholar
Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral. Hepat.11, 97–107 (2004). ArticleCASPubMed Google Scholar
Chen, C. J. et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA295, 65–73 (2006). ArticleCASPubMed Google Scholar
Bowen, D. G. & Walker, C. M. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature436, 946–952 (2005). ArticleCASPubMed Google Scholar
Block, T. M., Mehta, A. S., Fimmel, C. J. & Jordan, R. Molecular viral oncology of hepatocellular carcinoma. Oncogene22, 5093–5107 (2003). ArticleCASPubMed Google Scholar
Tokino, T., Tamura, H., Hori, N. & Matsubara, K. Chromosome deletions associated with hepatitis B virus integration. Virology185, 879–882 (1991). ArticleCASPubMed Google Scholar
Murakami, Y. et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut54, 1162–1168 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tarn, C., Lee, S., Hu, Y., Ashendel, C. & Andrisani, O. M. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J. Biol. Chem.276, 34671–34680 (2001). ArticleCASPubMed Google Scholar
Nijhara, R. et al. Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis B virus X protein in mouse hepatocytes in vivo. J. Virol.75, 10348–10358 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nijhara, R., Jana, S. S., Goswami, S. K., Kumar, V. & Sarkar, D. P. An internal segment (residues 58–119) of the hepatitis B virus X protein is sufficient to activate MAP kinase pathways in mouse liver. FEBS Lett.504, 59–64 (2001). ArticleCASPubMed Google Scholar
Feitelson, M. A. et al. Genetic mechanisms of hepatocarcinogenesis. Oncogene21, 2593–2604 (2002). ArticleCASPubMed Google Scholar
Ueda, H. et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nature Genet.9, 41–47 (1995). ArticleCASPubMed Google Scholar
Kim, C. M., Koike, K., Saito, I., Miyamura, T. & Jay, G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature351, 317–320 (1991). This article shows the carcinogenic potential of hepatitis B viral factors (more specifically, theHBxgene), as HBx transgenic animals develop HCC. ArticleCASPubMed Google Scholar
Yu, D. Y. et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J. Hepatol.31, 123–132 (1999). ArticleCASPubMed Google Scholar
Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA101, 6669–6674 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol.5, 215–229 (2005). ArticleCAS Google Scholar
Lok, A. S., Heathcote, E. J. & Hoofnagle, J. H. Management of hepatitis B: 2000 —summary of a workshop. Gastroenterology120, 1828–1853 (2001). ArticleCASPubMed Google Scholar
Kojima, T. Immune electron microscopic study of hepatitis B virus associated antigens in hepatocytes. Gastroenterol. Jpn17, 559–575 (1982). ArticleCASPubMed Google Scholar
Shimoda, R. et al. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res.54, 3171–3172 (1994). CASPubMed Google Scholar
Galli, A. et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology41, 1074–1084 (2005). ArticleCASPubMed Google Scholar
Chen, B. F. et al. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology130, 1153–1168 (2006). ArticleCASPubMed Google Scholar
Lindenbach, B. D. & Rice, C. M. Unravelling hepatitis C virus replication from genome to function. Nature436, 933–938 (2005). ArticleCASPubMed Google Scholar
Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science309, 623–626 (2005). This article reports a significant advance for research on HCV, as it shows successful HCV replication and viral particle production in cell culture. These culture systems will now provide a better opportunity to study viral replication and propagation, and provide clues for antiviral therapies. ArticleCASPubMed Google Scholar
Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med.11, 791–796 (2005). ArticleCASPubMed Google Scholar
Weiner, A. et al. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant. Proc. Natl Acad. Sci. USA92, 2755–2759 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pachiadakis, I., Pollara, G., Chain, B. M. & Naoumov, N. V. Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence? Lancet Infect. Dis.5, 296–304 (2005). ArticlePubMed Google Scholar
Park, K. J. et al. 1Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J. Biol. Chem.278, 30711–8 (2003). ArticleCASPubMed Google Scholar
Majumder, M. et al. Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by an anti-FAS antibody, in transgenic mice. Virology294, 94–105 (2002). ArticleCASPubMed Google Scholar
Melen, K., Fagerlund, R., Nyqvist, M., Keskinen, P. & Julkunen, I. Expression of hepatitis C virus core protein inhibits interferon-induced nuclear import of STATs. J. Med. Virol.73, 536–547 (2004). ArticleCASPubMed Google Scholar
Foy, E. et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA102, 2986–2991 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA102, 2992–2997 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gale, M., Jr. & Foy, E. M. Evasion of intracellular host defence by hepatitis C virus. Nature436, 939–945 (2005). ArticleCASPubMed Google Scholar
Hino, O., Kajino, K., Umeda, T. & Arakawa, Y. Understanding the hypercarcinogenic state in chronic hepatitis: a clue to the prevention of human hepatocellular carcinoma. J. Gastroenterol.37, 883–887 (2002). ArticleCASPubMed Google Scholar
Macdonald, A. et al. The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras- pathway signaling. J. Biol. Chem.278, 17775–17784 (2003). ArticleCASPubMed Google Scholar
Majumder, M., Ghosh, A. K., Steele, R., Ray, R. & Ray, R. B. Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J. Virol.75, 1401–1407 (2001). This report shows a potential carcinogenic mechanism of one of the HCV viral proteins (NS5A) through the interaction and consequent functional inactivation of p53. ArticleCASPubMedPubMed Central Google Scholar
Moriya, K. et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res.61, 4365–4370 (2001). CASPubMed Google Scholar
Kamegaya, Y. et al. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology41, 660–667 (2005). ArticlePubMed Google Scholar
McClain, C. J., Hill, D. B., Song, Z., Deaciuc, I. & Barve, S. Monocyte activation in alcoholic liver disease. Alcohol27, 53–61 (2002). ArticleCASPubMed Google Scholar
Hoek, J. B. & Pastorino, J. G. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol27, 63–68 (2002). ArticleCASPubMed Google Scholar
Campbell, J. S. et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc. Natl Acad. Sci. USA102, 3389–3394 (2005). This article provides evidence for the hepatocarcinogenic potential of the cirrhotic microenvironment, and provides a useful mouse model to investigate the molecular mechanisms underlying cirrhosis-induced HCC. ArticleCASPubMedPubMed Central Google Scholar
Comporti, M. et al. F(2)-isoprostanes stimulate collagen synthesis in activated hepatic stellate cells: a link with liver fibrosis? Lab. Invest.85, 1381–1391 (2005). ArticleCASPubMed Google Scholar
Osna, N. A., Clemens, D. L. & Donohue, T. M., Jr. Ethanol metabolism alters interferon-γ signaling in recombinant HepG2 cells. Hepatology42, 1109–1117 (2005). ArticleCASPubMed Google Scholar
Marrogi, A. J. et al. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J. Natl Cancer Inst.93, 1652–1655 (2001). ArticleCASPubMed Google Scholar
Kurz, D. J. et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J. Cell Sci.117, 2417–2426 (2004). ArticleCASPubMed Google Scholar
Aguilar, F., Harris, C. C., Sun, T., Hollstein, M. & Cerutti, P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science264, 1317–1319 (1994). ArticleCASPubMed Google Scholar
Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature350, 429–431 (1991). This article shows the occurrence of p53 mutations in human HCCs induced after aflatoxin B1 exposure. It points to the mutagenic properties of aflatoxin, as well as the key role that p53 inactivation might have in hepatocarcinogenesis. ArticleCASPubMed Google Scholar
Hsu, I. C. et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature350, 427–428 (1991). ArticleCASPubMed Google Scholar
Ozturk, M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet338, 1356–1359 (1991). ArticleCASPubMed Google Scholar
Riley, J., Mandel, H. G., Sinha, S., Judah, D. J. & Neal, G. E. In vitro activation of the human Harvey-ras proto-oncogene by aflatoxin B1. Carcinogenesis18, 905–910 (1997). ArticleCASPubMed Google Scholar
Kew, M. C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int.23, 405–409 (2003). ArticleCASPubMed Google Scholar
Minouchi, K., Kaneko, S. & Kobayashi, K. Mutation of p53 gene in regenerative nodules in cirrhotic liver. J. Hepatol.37, 231–239 (2002). ArticleCASPubMed Google Scholar
Nose, H., Imazeki, F., Ohto, M. & Omata, M. p53 gene mutations and 17p allelic deletions in hepatocellular carcinoma from Japan. Cancer72, 355–360 (1993). ArticleCASPubMed Google Scholar
Nishida, N. et al. Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma. Cancer Res.53, 368–372 (1993). CASPubMed Google Scholar
Hosono, S., Chou, M. J., Lee, C. S. & Shih, C. Infrequent mutation of p53 gene in hepatitis B virus positive primary hepatocellular carcinomas. Oncogene8, 491–496 (1993). CASPubMed Google Scholar
Farazi, P. A., Glickman, J., Horner, J. & Depinho, R. A. Cooperative Interactions of p53 Mutation, Telomere Dysfunction, and Chronic Liver Damage in Hepatocellular Carcinoma Progression. Cancer Res.66, 4766–4773 (2006). ArticleCASPubMed Google Scholar
Huang, S. N. & Chisari, F. V. Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology21, 620–626 (1995). CASPubMed Google Scholar
Ghebranious, N. & Sell, S. Hepatitis B injury, male gender, aflatoxin, and p53 expression each contribute to hepatocarcinogenesis in transgenic mice. Hepatology27, 383–391 (1998). ArticleCASPubMed Google Scholar
Ghebranious, N. & Sell, S. The mouse equivalent of the human p53ser249 mutation p53ser246 enhances aflatoxin hepatocarcinogenesis in hepatitis B surface antigen transgenic and p53 heterozygous null mice. Hepatology27, 967–973 (1998). ArticleCASPubMed Google Scholar
Gregorieff, A. & Clevers, H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev.19, 877–890 (2005). ArticleCASPubMed Google Scholar
Ishizaki, Y. et al. Immunohistochemical analysis and mutational analyses of β-catenin, Axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol.24, 1077–1083 (2004). This article shows alterations of the Wnt signalling pathway in human HCC. It shows increased nuclear expression of β-catenin, as well as mutations in β-catenin, axin1 and axin2. CASPubMed Google Scholar
Edamoto, Y. et al. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int. J. Cancer106, 334–341 (2003). ArticleCASPubMed Google Scholar
Thorgeirsson, S. S. & Grisham, J. W. Molecular pathogenesis of human hepatocellular carcinoma. Nature Genet.31, 339–346 (2002). ArticleCASPubMed Google Scholar
Peng, S. Y. et al. High α-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and β-catenin mutations. Int. J. Cancer112, 44–50 (2004). ArticleCASPubMed Google Scholar
An, F. Q. et al. Tumor heterogeneity in small hepatocellular carcinoma: analysis of tumor cell proliferation, expression and mutation of p53 AND β-catenin. Int. J. Cancer93, 468–474 (2001). ArticleCASPubMed Google Scholar
Hsu, H. C. et al. β-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am. J. Pathol.157, 763–770 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huang, H. et al. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am. J. Pathol.155, 1795–1801 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cha, M. Y., Kim, C. M., Park, Y. M. & Ryu, W. S. Hepatitis B virus X protein is essential for the activation of Wnt/β-catenin signaling in hepatoma cells. Hepatology39, 1683–1693 (2004). ArticleCASPubMed Google Scholar
Torbenson, M. et al. Concurrent evaluation of p53, β-catenin, and α-fetoprotein expression in human hepatocellular carcinoma. Am. J. Clin. Pathol.122, 377–382 (2004). ArticleCASPubMed Google Scholar
Prange, W. et al. β-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J. Pathol.201, 250–259 (2003). ArticleCASPubMed Google Scholar
Gross-Goupil, M. et al. Analysis of chromosomal instability in pulmonary or liver metastases and matched primary hepatocellular carcinoma after orthotopic liver transplantation. Int. J. Cancer104, 745–751 (2003). ArticleCASPubMed Google Scholar
Calvisi, D. F., Factor, V. M., Ladu, S., Conner, E. A. & Thorgeirsson, S. S. Disruption of β-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology126, 1374–1386 (2004). ArticleCASPubMed Google Scholar
Ito, Y. et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br. J. Cancer84, 1377–1383 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hopfner, M. et al. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J. Hepatol.41, 1008–1016 (2004). ArticleCASPubMed Google Scholar
Schiffer, E. et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology41, 307–314 (2005). ArticleCASPubMed Google Scholar
Philip, P. A. et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J. Clin. Oncol.23, 6657–6663 (2005). ArticleCASPubMed Google Scholar
Jhappan, C. et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell61, 1137–1146 (1990). This work points to the hepatocarcinogenic potential of TGFα signalling, and complements findings of ErbB receptor overexpression in human HCCs. ArticleCASPubMed Google Scholar
Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L. & Lee, D. C. Overexpression of TGF α in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell61, 1121–1135 (1990). ArticleCASPubMed Google Scholar
Webber, E. M., Wu, J. C., Wang, L., Merlino, G. & Fausto, N. Overexpression of transforming growth factor-α causes liver enlargement and increased hepatocyte proliferation in transgenic mice. Am. J. Pathol.145, 398–408 (1994). CASPubMedPubMed Central Google Scholar
Russell, W. E., Kaufmann, W. K., Sitaric, S., Luetteke, N. C. & Lee, D. C. Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice. Mol. Carcinog.15, 183–189 (1996). ArticleCASPubMed Google Scholar
Sandgren, E. P. et al. Transforming growth factor-α dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol. Cell Biol.13, 320–330 (1993). ArticleCASPubMedPubMed Central Google Scholar
Sargent, L. M. et al. Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-α in the liver. Am. J. Pathol.154, 1047–1055 (1999). ArticleCASPubMedPubMed Central Google Scholar
Murakami, H. et al. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res.53, 1719–1723 (1993). CASPubMed Google Scholar
Santoni-Rugiu, E., Nagy, P., Jensen, M. R., Factor, V. M. & Thorgeirsson, S. S. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-α. Am. J. Pathol.149, 407–428 (1996). CASPubMedPubMed Central Google Scholar
Jakubczak, J. L., Chisari, F. V. & Merlino, G. Synergy between transforming growth factor α and hepatitis B virus surface antigen in hepatocellular proliferation and carcinogenesis. Cancer Res.57, 3606–3611 (1997). CASPubMed Google Scholar
Daveau, M. et al. Hepatocyte growth factor, transforming growth factor-α, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol. Carcinog.36, 130–141 (2003). ArticleCASPubMed Google Scholar
Sakata, H. et al. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ.7, 1513–1523 (1996). CASPubMed Google Scholar
Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, J. M. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol.153, 1023–1034 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kanai, Y., Ushijima, S., Tsuda, H., Sakamoto, M. & Hirohashi, S. Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis. Cancer Lett.148, 73–80 (2000). ArticleCASPubMed Google Scholar
Kanai, Y. et al. DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis. Hepatology29, 703–709 (1999). ArticleCASPubMed Google Scholar
Kanai, Y. et al. Aberrant DNA methylation on chromosome 16 is an early event in hepatocarcinogenesis. Jpn J. Cancer Res.87, 1210–1217 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res.13, 319–333 (2003). ArticleCASPubMed Google Scholar
Lee, S. et al. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol.163, 1371–1378 (2003). This article shows the presence of epigenetic alterations (hypermethylation) in human HCCs. This work shows hypermethylation in the earliest stages of hepatocarcinogenesis, and to a greater extent in tumour progression. ArticleCASPubMedPubMed Central Google Scholar
Wong, I. H. et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res.59, 71–73 (1999). CASPubMed Google Scholar
Matsuda, Y., Ichida, T., Matsuzawa, J., Sugimura, K. & Asakura, H. p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterology116, 394–400 (1999). ArticleCASPubMed Google Scholar
Liew, C. T. et al. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene18, 789–795 (1999). ArticleCASPubMed Google Scholar
Murata, H. et al. Promoter hypermethylation silences cyclooxygenase-2 (Cox-2) and regulates growth of human hepatocellular carcinoma cells. Lab. Invest.84, 1050–1059 (2004). ArticleCASPubMed Google Scholar
Kubo, T. et al. Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma. Cancer Res.64, 5172–5177 (2004). ArticleCASPubMed Google Scholar
Wong, C. M., Lee, J. M., Ching, Y. P., Jin, D. Y. & Ng, I. O. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res.63, 7646–7651 (2003). CASPubMed Google Scholar
Maeta, Y., Shiota, G., Okano, J. & Murawaki, Y. Effect of promoter methylation of the p16 gene on phosphorylation of retinoblastoma gene product and growth of hepatocellular carcinoma cells. Tumour Biol.26, 300–305 (2005). ArticleCASPubMed Google Scholar
Urabe, Y. et al. Telomere length in human liver diseases. Liver16, 293–297 (1996). This article shows telomere shortening during human chronic liver disease and the induction of liver cirrhosis. It also suggests that telomerase might be re-activated during the late stages of hepatocarcinogenesis as the telomere length of advanced HCCs is slightly longer than that of early-stage HCCs, suggestive of telomerase activation. ArticleCASPubMed Google Scholar
Miura, N. et al. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogenet.93, 56–62 (1997). ArticleCASPubMed Google Scholar
Rudolph, K. L., DrPinho, R. A. in The Liver Biology and Pathobiology (eds Arias, I., Fausto, N., Boyer, J., Chisari, F. & Shafritz, D.) 1001–1011 (Lippincott Williams and Wilkins, Philadelphia, 2001). Google Scholar
Kitada, T., Seki, S., Kawakita, N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun.211, 33–39 (1995). ArticleCASPubMed Google Scholar
Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb J.16, 935–942 (2002). ArticleCASPubMed Google Scholar
Plentz, R. R. et al. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology40, 80–86 (2004). ArticleCASPubMed Google Scholar
Plentz, R. R. et al. Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma. Hepatology42, 522–526 (2005). ArticleCASPubMed Google Scholar
Farazi, P. A. et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res.63, 5021–5027 (2003). The role of telomere dysfunction in HCC initiation and progression is addressed in this work. Whereas telomere dysfunction promotes liver cancer initiation in mice, it suppresses progression, therefore pointing to the importance of telomerase re-activation in HCC progression. CASPubMed Google Scholar
Nagao, K., Tomimatsu, M., Endo, H., Hisatomi, H. & Hikiji, K. Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J. Gastroenterol.34, 83–87. (1999). ArticleCASPubMed Google Scholar
Shimojima, M. et al. Detection of telomerase activity, telomerase RNA component, and telomerase reverse transcriptase in human hepatocellular carcinoma. Hepatol. Res.29, 31–38 (2004). ArticleCASPubMed Google Scholar
Lee, C. M. et al. Telomerase activity and telomerase catalytic subunit in hepatocellular carcinoma. Hepatogastroenterology51, 796–800 (2004). CASPubMed Google Scholar
Ferber, M. J. et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene22, 3813–3820 (2003). ArticleCASPubMed Google Scholar
Takeo, S. et al. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridization analysis. Cancer Genet. Cytogenet.130, 127–132 (2001). ArticleCASPubMed Google Scholar
Nishimoto, A. et al. Functional evidence for a telomerase repressor gene on human chromosome 10p15. 1. Oncogene20, 828–835 (2001). ArticleCASPubMed Google Scholar
Piao, Y. F., He, M., Shi, Y. & Tang, T. Y. Relationship between microvessel density and telomerase activity in hepatocellular carcinoma. World J. Gastroenterol.10, 2147–2149 (2004). ArticlePubMedPubMed Central Google Scholar
Kobayashi, T., Kubota, K., Takayama, T. & Makuuchi, M. Telomerase activity as a predictive marker for recurrence of hepatocellular carcinoma after hepatectomy. Am. J. Surg.181, 284–288 (2001). ArticleCASPubMed Google Scholar
Hytiroglou, P. et al. Telomerase activity in precancerous hepatic nodules. Cancer82, 1831–1838 (1998). ArticleCASPubMed Google Scholar
Tahara, H. et al. Telomerase activity in human liver tissues: comparison between chronic liver disease and hepatocellular carcinomas. Cancer Res.55, 2734–2736 (1995). CASPubMed Google Scholar
Youssef, N., Paradis, V., Ferlicot, S. & Bedossa, P. In situ detection of telomerase enzymatic activity in human hepatocellular carcinogenesis. J. Pathol.194, 459–465 (2001). ArticleCASPubMed Google Scholar
Oh, B. K. et al. Telomere shortening and telomerase reactivation in dysplastic nodules of human hepatocarcinogenesis. J. Hepatol.39, 786–792 (2003). ArticleCASPubMed Google Scholar
Ogami, M. et al. Quantitative analysis and in situ localization of human telomerase RNA in chronic liver disease and hepatocellular carcinoma. Lab. Invest.79, 15–26 (1999). CASPubMed Google Scholar
Artandi, S. E. et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl Acad. Sci. USA99, 8191–8196 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gollin, S. M. Mechanisms leading to chromosomal instability. Semin. Cancer Biol.15, 33–42 (2005). ArticleCASPubMed Google Scholar
Smith, M. W. et al. Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma. Cancer Res.63, 859–864 (2003). CASPubMed Google Scholar
Yu, C. T. et al. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol. Cell Biol.25, 5789–5800 (2005). ArticleCASPubMedPubMed Central Google Scholar
Andrews, P. D. Aurora kinases: shining lights on the therapeutic horizon? Oncogene24, 5005–5015 (2005). ArticleCASPubMed Google Scholar
Saeki, A. et al. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer94, 2047–2054 (2002). ArticleCASPubMed Google Scholar
Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell119, 847–860 (2004). ArticleCASPubMed Google Scholar
Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell119, 861–872 (2004). ArticleCASPubMed Google Scholar
Kuroki, T. et al. Evidence for the presence of two tumour-suppressor genes for hepatocellular carcinoma on chromosome 13q. Br. J. Cancer72, 383–385 (1995). ArticleCASPubMedPubMed Central Google Scholar
Martins, C., Kedda, M. A. & Kew, M. C. Characterization of six tumor suppressor genes and microsatellite instability in hepatocellular carcinoma in southern African blacks. World J. Gastroenterol.5, 470–476 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wong, N. et al. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology32, 1060–1068 (2000). ArticleCASPubMed Google Scholar
Hwang, H. J. et al. A comprehensive karyotypic analysis on Korean hepatocellular carcinoma cell lines by cross-species color banding and comparative genomic hybridization. Cancer Genet. Cytogenet.141, 128–137 (2003). ArticleCASPubMed Google Scholar
Okabe, H. et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and-negative tumors. Hepatology31, 1073–1079 (2000). ArticleCASPubMed Google Scholar
Wong, N. et al. Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin. Cancer Res.6, 4000–4009 (2000). CASPubMed Google Scholar
Kusano, N. et al. Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma. Cancer94, 746–751 (2002). ArticlePubMed Google Scholar
Kitay-Cohen, Y. et al. Analysis of chromosomal aberrations in large hepatocellular carcinomas by comparative genomic hybridization. Cancer Genet. Cytogenet.131, 60–64 (2001). ArticleCASPubMed Google Scholar
Koo, S. H. et al. Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet. Cytogenet.130, 22–28 (2001). ArticleCASPubMed Google Scholar
Marchio, A. et al. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer18, 59–65 (1997). ArticleCASPubMed Google Scholar
Hashimoto, K. et al. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Mod. Pathol.17, 617–622 (2004). ArticleCASPubMed Google Scholar
Sakakura, C. et al. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infection detected by comparative genomic hybridization. Br. J. Cancer80, 2034–2039 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. H. et al. Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J. Cancer Res. Clin. Oncol.129, 279–286 (2003). CASPubMed Google Scholar
Kusano, N. et al. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology29, 1858–1862 (1999). ArticleCASPubMed Google Scholar
Zondervan, P. E. et al. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J. Pathol.192, 207–215 (2000). ArticleCASPubMed Google Scholar
Marchio, A. et al. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene19, 3733–3738 (2000). ArticleCASPubMed Google Scholar
Balsara, B. R. et al. Human hepatocellular carcinoma is characterized by a highly consistent pattern of genomic imbalances, including frequent loss of 16q23. 1–24. 1. Genes Chromosomes Cancer30, 245–253 (2001). ArticleCASPubMed Google Scholar
Kawai, H. et al. Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology31, 1246–1250 (2000). ArticleCASPubMed Google Scholar
Guan, X. Y. et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer29, 110–116 (2000). ArticleCASPubMed Google Scholar
Wilkens, L. et al. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc. Natl Acad. Sci. USA101, 1309–1314 (2004). This study shows a correlation between increasing levels of chromosomal instability and progression of HCC, suggesting that marked genome instability characterizes the more advanced stages of the disease. ArticleCASPubMedPubMed Central Google Scholar
Wong, N. et al. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am. J. Pathol.154, 37–43 (1999). ArticleCASPubMedPubMed Central Google Scholar
Okabe, H. et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res.61, 2129–2137 (2001). CASPubMed Google Scholar
Iizuka, N. et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet361, 923–929 (2003). ArticleCASPubMed Google Scholar
Lee, J. S. et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology40, 667–676 (2004). This work shows the successful use of gene-expression profiling to classify human HCCs. Gene-expression patterns could distinguish between HCCs with different prognoses. ArticleCASPubMed Google Scholar
Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genet.36, 1306–1311 (2004). This paper compared gene-expression profiles of human HCCs with HCCs from various mouse models. It shows commonalities in gene-expression patterns in tumours from both species, and points to the promising use of comparative functional genomics to understand the molecular basis of human cancer. ArticleCASPubMed Google Scholar
Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell125, 1253–1267 (2006). This paper shows the successful use of comparative genomics in the identification and validation of new oncogenes important in hepatocarcinogenesis. ArticleCASPubMedPubMed Central Google Scholar
Lee, J. S. & Thorgeirsson, S. S. Genetic profiling of human hepatocellular carcinoma. Semin. Liver Dis.25, 125–132 (2005). ArticleCASPubMed Google Scholar
Lee, J. S., Grisham, J. W. & Thorgeirsson, S. S. Comparative functional genomics for identifying models of human cancer. Carcinogenesis26, 1013–1020 (2005). ArticleCASPubMed Google Scholar
O'Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell2, 149–155 (2002). ArticleCASPubMed Google Scholar
Roskams, T., Libbrecht, L. in Malignant Liver Tumours: Basic Concepts and Clinical Management (eds Berr, F., B. J., Hauss, J., Wands, J. & Wittekind, C.) 44–56 (Kluwer Academic Publishers, Dordrecht, 2003). Google Scholar
Fausto, N. & Campbell, J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev.120, 117–130 (2003). ArticleCASPubMed Google Scholar
Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431, 1112–1117 (2004). This study shows the ability of tumour cells to differentiate into hepatocytes on oncogene inactivation, and their ability to restore their cancerous phenotype on oncogene re-activation. Therefore, this work suggests a possible stem cell origin of HCC. ArticlePubMed Google Scholar
Dumble, M. L., Croager, E. J., Yeoh, G. C. & Quail, E. A. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis23, 435–445 (2002). ArticleCASPubMed Google Scholar
Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nature Med.12, 410–416 (2006). ArticleCASPubMed Google Scholar
Sell, S. Cellular origin of hepatocellular carcinomas. Semin. Cell Dev. Biol.13, 419–424 (2002). ArticlePubMed Google Scholar
Braun, L., Mikumo, R. & Fausto, N. Production of hepatocellular carcinoma by oval cells: cell cycle expression of c-myc and p53 at different stages of oval cell transformation. Cancer Res.49, 1554–1561 (1989). CASPubMed Google Scholar
Fotiadu, A. et al. Progenitor cell activation in chronic viralhepatitis. Liver Int.24, 268–274 (2004). ArticlePubMed Google Scholar
Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.13, 1382–1397 (1999). ArticleCASPubMedPubMed Central Google Scholar
Beachy, P. A., Karhadkar, S. S. & Berman, D. M. Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324–331 (2004). ArticleCASPubMed Google Scholar
Wu, P. C. et al. Hepatocellular carcinoma expressing both hepatocellular and biliary markers also expresses cytokeratin 14, a marker of bipotential progenitor cells. J. Hepatol.31, 965–966 (1999). ArticleCASPubMed Google Scholar
Huang, T., Chesnokov, V., Yokoyama, K. K., Carr, B. I. & Itakura, K. Expression of the Hoxa-13 gene correlates to hepatitis B and C virus associated HCC. Biochem. Biophys. Res. Commun.281, 1041–1044 (2001). ArticleCASPubMed Google Scholar
Zhu, A. X. et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J. Clin. Oncol.24, 1898–1903 (2006). ArticleCASPubMed Google Scholar
Sarkany, R. P. The management of porphyria cutanea tarda. Clin. Exp. Dermatol.26, 225–232 (2001). ArticleCASPubMed Google Scholar
Parfrey, H., Mahadeva, R. & Lomas, D. A. α(1)-antitrypsin deficiency, liver disease and emphysema. Int. J. Biochem. Cell Biol.35, 1009–1014 (2003). ArticleCASPubMed Google Scholar
Tanguay, R. M., Jorquera, R., Poudrier, J. & St-Louis, M. Tyrosine and its catabolites: from disease to cancer. Acta Biochim. Pol.43, 209–216 (1996). CASPubMed Google Scholar
El-Serag, H. B., Tran, T. & Everhart, J. E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology126, 460–468 (2004). ArticlePubMed Google Scholar
Farrell, G. C. & Larter, C. Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology43, S99–S112 (2006). ArticleCASPubMed Google Scholar
Adams, L. A. & Angulo, P. Recent concepts in non-alcoholic fatty liver disease. Diabet. Med.22, 1129–1133 (2005). ArticleCASPubMed Google Scholar