Targeted anti-mitotic therapies: can we improve on tubulin agents? (original) (raw)
Wood, K. W. et al. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol.1, 370–377 (2001). ArticleCASPubMed Google Scholar
Nigg, E. A., Blangy, A. & Lane, H. A. Dynamic changes in nuclear architecture during mitosis: on the role of protein phosphorylation in spindle assembly and chromosome segregation. Exp. Cell Res.229, 174–180 (1996). ArticleCASPubMed Google Scholar
Keen, N. & Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer4, 927–936 (2004). ArticleCAS Google Scholar
Strebhardt, K., Ullrich, A., Authors, F. N. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer6, 321–330 (2006). ArticleCAS Google Scholar
Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5,a kinesin-related motor essential for bipolar spindle formation in vivo. Cell83, 1159–1169 (1995). ArticleCASPubMed Google Scholar
Wood, K. W. et al. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell91, 357–366 (1997). ArticleCASPubMed Google Scholar
Abrieu, A. et al. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell102, 817–826 (2000). This thought-provoking study shows the crucial role of CENPE in mitotic-spindle checkpoint regulation in addition to its previously known role in chromosome alignment. ArticleCASPubMed Google Scholar
Tao, W. et al. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell8, 49–59 (2005). This study shows that mitotic arrest alone can be insufficient to cause tumour cell death, and that subsequent events ultimately define cell fate. ArticleCASPubMed Google Scholar
Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res.56, 816–825 (1996). CASPubMed Google Scholar
Marcus, A. I. et al. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and-sensitive cancer cells. J. Biol. Chem.280, 11569–11577 (2005). ArticleCASPubMed Google Scholar
Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene23, 2825–2837 (2004). ArticleCASPubMed Google Scholar
Michel, L. et al. Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc. Natl Acad. Sci. USA101, 4459–4464 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kops, G. J. P. L., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA101, 8699–8704 (2004). ArticleCASPubMedPubMed Central Google Scholar
Michel, L., Benezra, R. & Diaz-Rodriguez, E. A double edged sword: MAD2 dependent mitotic checkpoint defects in tumorigenesis and tumor cell death. Cell Cycle3, 990–992 (2006). Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kashina, A. S. et al. The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochimica Biophysica Acta1357, 257–271 (1997). ArticleCAS Google Scholar
Hegde, P. S. et al. Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proc. Am. Soc. Clin. Oncol.22, 535 (2003). Google Scholar
Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science286, 971–974 (1999). The first study to show that selective inhibitors of KSP could be identified and shown to have excellent anti-mitotic activity ArticleCASPubMed Google Scholar
Sakowicz, R. et al. Antitumor activity of a kinesin inhibitor. Cancer Res.64, 3276–3280 (2004). ArticleCASPubMed Google Scholar
Brier, S. et al. Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochemistry43, 13072–13082 (2004). ArticleCASPubMed Google Scholar
Debonis, S. et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther.3, 1079–1090 (2004). CASPubMed Google Scholar
Gartner, M. et al. Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. Chembiochem.6, 1173–1177 (2005). ArticleCASPubMed Google Scholar
Sunder-Plassmann, N. et al. Synthesis and biological evaluation of new tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin Eg5. Bioorg. Med. Chem.13, 6094–6111 (2005). ArticleCASPubMed Google Scholar
Cox, C. D. et al. Kinesin spindle protein (KSP) inhibitors. Part 1: the discovery of 3, 5-diaryl-4, 5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem. Lett.15, 2041–2045 (2005). ArticleCASPubMed Google Scholar
Yan, Y. et al. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J. Mol. Biol.335, 547–554 (2004). ArticleCASPubMed Google Scholar
Johnson, R. K. et al. SB-715992, a potent and selective inhbitor of the mitotic kinesin KSP, demonstrates broad-spectrum activity in advanced murine tumors and human tumor xenografts. Proc. Am. Assoc. Can. Res.43, 269 (2002). Google Scholar
Gonzales, P. et al. Breadth of anti-tumor activity of CK0238273 (SB-715992), a novel inhibitor of the mitotic kinesin KSP. Proc. Am. Assoc. Can. Res.43, 269 (2002). Google Scholar
Lobell, R. B. et al. In vivo characterization of an inhibitor of the mitotic kinesin, KSP: pharacodynamics, efficacy, and tolerability in xenograft tumor models. Proc. AACR-NCI-EORTC Mol. Tar. Can. Ther. Mtg Abst. B 189 (2005).
Garcia-Saez, I. et al. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J. Mol. Biol.340, 1107–1116 (2004). ArticleCASPubMed Google Scholar
Liu, D. et al. Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis. Biochem. Biophys. Res. Comm.345, 394–402 (2006). ArticleCASPubMed Google Scholar
Yao, X. et al. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J. Cell Biol.139, 435–447 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chan, G. K. et al. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol.146, 941–954 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mao, Y. et al. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell114, 87–98 (2003). ArticleCASPubMed Google Scholar
McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell12, 2776–2789 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yao, X. et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol.2, 484–491 (2000). ArticleCASPubMed Google Scholar
Putkey, F. R. et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell3, 351–365 (2002). ArticleCASPubMed Google Scholar
Andrews, P. D., Knatko, E., Moore, W. J. & Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell Biol.15, 672–683 (2003). ArticleCASPubMed Google Scholar
Marumoto, T., Zhang, D. & Saya, H. Aurora-A- a guardian of poles. Nature Rev. Cancer5, 42–50 (2005). ArticleCAS Google Scholar
Matthews, N., Visintin, C., Hartzoulakis, B., Jarvis, A. & Selwood, D. L. Aurora A and B kinases as targets for cancer: will they be selective for tumors? Expert Rev. Anticancer Ther.6, 109–120 (2006). ArticleCASPubMed Google Scholar
Ecsedy, J. A. et al. Effect of aurora A inhibition in cultured human tumor cells using the selective small molecule inhibitor MLN8054. AACR Meeting Abstracts 2006 488 (2006). Google Scholar
Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol.156, 437–451 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol.153, 865–880 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gizatullin, F. et al. The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res.66, 7668–7677 (2006). ArticleCASPubMed Google Scholar
Yang, H. et al. Mitotic requirement for aurora A kinase is bypassed in the absence of aurora B kinase. FEBS Lett.579, 3385–3391 (2005). ArticleCASPubMed Google Scholar
Hoover, R. R. & Harding, M. W. Synergistic activity of the aurora kinase inhibitor MK-0457 (VX-680) with idarubicin, Ara-C, and inhibitors of BCR-ABL. ASH Annual Meeting Abstracts108, 1384 (2006). Google Scholar
Barr, F. A., Sillje, H. H. W. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol.5, 429–440 (2004). ArticleCAS Google Scholar
Takai, N., Hamanaka, R., Yoshimatsu, J. & Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene24, 287–291 (2005). ArticleCASPubMed Google Scholar
Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene24, 267–276 (2005). ArticleCASPubMed Google Scholar
Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol.14, 1712–1722 (2004). ArticleCASPubMed Google Scholar
Liu, X. Q. & Erikson, R. L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc. Natl Acad. Sci. USA100, 5789–5794 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chu, Q. S. et al. Phase I trial of novel kinesin spindle protein (KSP) inhibitor SB-715992 IV Q 21 days. J. Clin. Oncol.22, 2078 (2004). Article Google Scholar
Chu, Q. S. et al. A phase I study to determine the safety and pharmacokinetics of IV administered SB-715992, a novel kinesin spindle protein (KSP) inhibitor, in patients (pts) with solid tumors. Proc. Am. Soc. Clin. Oncol.22, 525 (2003). Google Scholar
Burris, H. A. et al. Phase I trial of novel kinesin spindle protein (KSP) inhibitor SB-715992 IV days 1, 8, 15 q 28 days. J. Clin. Oncol.22, 2004 (2004). Article Google Scholar
Miller, K. et al. Phase II, open label study of SB-715992 (ispinesib) in subjects with advanced or metastatic breast cancer. San Antonio Breast Cancer Symp. abst. 1089 (2005).
Jackson, J. R. et al. A second generation KSP inhibitor, SB-743921, is a highly potent and active therapeutic in preclinical models of cancer. AACR Meeting Abstracts2006, B11 (2006). Google Scholar
Holen, K. D. et al. Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. J. Clin. Oncol.24, 2000 (2006). Google Scholar
Holen, K. D. et al. Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. J. Clin. Oncol.23, 2010 (2005). Article Google Scholar
Stein, M. N. et al. Phase I clinical and pharmacokinetic (PK) trial of the kinesin spindle protein (KSP) inhibitor MK-0731 in cancer patients. J. Clin. Oncol.24, 2001 (2006). Article Google Scholar
Rubin, E. H. et al. A phase I clinical and pharmacokinetic (PK) trial of the aurora kinase (AK) inhibitor MK-0457 in cancer patients. J. Clin. Oncol.24, 3009 (2006). Google Scholar
Schellens, J. H. et al. Phase I and pharmacological study of the novel aurora kinase inhibitor AZD1152. J. Clin. Oncol.24, 3008 (2006). Google Scholar
Hofheinz, R. et al. A phase I repeated dose escalation study of the Polo-like kinase 1 inhibitor BI 2536 in patients with advanced solid tumours. J. Clin. Oncol.24, 2038 (2006). Article Google Scholar
Munzert, G. et al. A phase I study of two administration schedules of the Polo-like kinase 1 inhibitor BI 2536 in patients with advanced solid tumors. J. Clin. Oncol.24, 3069 (2006). Article Google Scholar
Ohnuma, T. et al. Phase I study of ON 01910. Na by 3-day continuous infusion (CI) in patients (pts) with advanced cancer. J. Clin. Oncol.24, 13137 (2006). Google Scholar
Donehower, R. C. et al. Phase I study of ON-01910. Na, a novel cell cycle inhibitor in adult patients with solid tumors. J. Clin. Oncol.24, 13026 (2006). Google Scholar
Steegmaier, M. et al. BI 2536, a potent and highly selective inhibitor of Polo-like kinase 1 (Plk1), induces mitotic arrest and apoptosis in a broad spectrum of tumor cell lines. Clin. Cancer Res.11, 9147 (2005). Google Scholar
Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ.11, 615–623 (2000). CASPubMed Google Scholar
Soncini, C. et al. PHA-680632, a novel aurora kinase inhibitor with potent antitumoral activity. Clin. Cancer Res.12, 4080–4089 (2006). ArticleCASPubMed Google Scholar
Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet362, 362–369 (2003). This landmark study showed that gene-expression profiles from patient tumour samples can predict whether the disease will respond to taxane therapy. ArticleCASPubMed Google Scholar
Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol.23, 7265–7277 (2005). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Prediction of individual response to platinum/paclitaxel combination using novel marker genes in ovarian cancers. Mol. Cancer Ther.5, 767–775 (2006). ArticleCASPubMed Google Scholar
Magne, N., Largillier, R., Marcy, P. Y., Magne, J. & Namer, M. Cardiac toxicity assessment in locally advanced breast cancer treated neoadjuvantly with doxorubicin/paclitaxel regimen. Supp. Care Cancer13, 819–825 (2005). Article Google Scholar
Holmes, F. A. et al. Sequence-dependent alteration of doxorubicin pharmacokinetics by paclitaxel in a phase i study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J. Clin. Oncol.14, 2713–2721 (1996). ArticleCASPubMed Google Scholar
Mondesire, W. H. et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res.10, 7031–7042 (2004). ArticleCASPubMed Google Scholar
Kenny, L. M. et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res.65, 10104–10112 (2005). ArticleCASPubMed Google Scholar
Kenny, L. M. et al. Early assessment of response to treatment in breast cancer by [18F]fluorothymidine-positron emission tomography. J. Clin. Oncol. (Meeting Abstracts)23, 2084 (2005). Google Scholar
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112, 407–421 (2003). ArticleCASPubMed Google Scholar