The impact of a negligent G2/M checkpoint on genomic instability and cancer induction (original) (raw)
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). ArticleCASPubMed Google Scholar
Stanbridge, E. J. & Nowell, P. C. Origins of human cancer revisited. Cell63, 867–874 (1990). ArticleCASPubMed Google Scholar
Loeb, L. A. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res.54, 5059–5063 (1994). CASPubMed Google Scholar
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature434, 864–870 (2005). ArticleCASPubMed Google Scholar
Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature434, 907–913 (2005). ArticleCASPubMed Google Scholar
Melo, J. V. & Barnes, D. J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Rev. Cancer7, 441–453 (2007). ArticleCAS Google Scholar
Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer5, 773–785 (2005). ArticleCAS Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature Rev. Cancer7, 233–245 (2007). ArticleCAS Google Scholar
Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature447, 686–690 (2007). ArticleCASPubMed Google Scholar
Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem.71, 101–132 (2002). ArticleCASPubMed Google Scholar
Goodhead, D. T. Initial events in the cellular effects of ionising radiations: clustered damage in DNA. Int. J. Radiat. Biol.65, 7–17 (1994). ArticleCASPubMed Google Scholar
Thacker, J. in Advances in Radiation Biology 16, (eds Lett, J. T. & Sinclair, W. K.) 77–124 (Academic Press, San Diego, 1992). Google Scholar
Collins, A. R. Mutant rodent cell lines sensitive to ultraviolet light, ionising radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat. Research293, 99–118 (1993). ArticleCAS Google Scholar
Jeggo, P. A. in Molecular mechanisms in radiation mutagenesis and carcinogenesis (eds Chadwick, K. H., Cox, R., Leenhouts, H. P. & Thacker, J.) 17–22 (European Commission, Luxembourg, 1994). Google Scholar
Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science291, 1284–1289 (2001). ArticleCASPubMed Google Scholar
Wood, R. D., Mitchell, M. & Lindahl, T. Human DNA repair genes, 2005. Mutat. Research577, 275–283 (2005). ArticleCAS Google Scholar
Kurz, E. U. & Lees-Miller, S. P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst.)3, 889–900 (2004). ArticleCAS Google Scholar
Abraham, R. T. PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. DNA Repair (Amst.)3, 883–887 (2004). ArticleCAS Google Scholar
Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer3, 155–168 (2003). ArticleCAS Google Scholar
Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science266, 1821–1828 (1994). ArticleCASPubMed Google Scholar
Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). ArticleCASPubMed Google Scholar
Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science281, 1677–1679 (1998). ArticleCASPubMed Google Scholar
Lukas, J., Lukas, C. & Bartek, J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst.)3, 997–1007 (2004). ArticleCAS Google Scholar
Terzoudi, G. I., Manola, K. N., Pantelias, G. E. & Iliakis, G. Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res.65, 11292–11296 (2005). ArticleCASPubMed Google Scholar
O'Driscoll, M. & Jeggo, P. A. The role of double-strand break repair - insights from human genetics. Nature Rev. Genet.7, 45–54 (2006). ArticleCASPubMed Google Scholar
Lea, D. E. & Coulson, C. A. The distribution of numbers of mutants in bacterial populations. J. Genetics49, 264–285 (1949). ArticleCAS Google Scholar
Cornforth, M. N. & Bedford, J. S. in Advances in Radiation Biology (eds Lett, J. T. & Sinclair, W. K.) 17, 423–496 (Academic Press, San Diego, 1993). Google Scholar
Toczyski, D. P., Galgoczy, D. J. & Hartwell, L. H. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell90, 1097–1106 (1997). ArticleCASPubMed Google Scholar
Harrison, J. C. & Haber, J. E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet.40, 209–235 (2006). ArticleCASPubMed Google Scholar
Bennett, C. B., Snipe, J. R. & Resnick, M. A. A persistent double-strand break destabilizes human DNA in yeast and can lead to G2 arrest and lethality. Cancer Res.57, 1970–1980 (1997). CASPubMed Google Scholar
Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol.15, 6128–6138 (1995). ArticleCASPubMedPubMed Central Google Scholar
Deckbar, D. et al. Chromosome breakage after G2 checkpoint release. J. Cell Biol.176, 748–755 (2007). ArticleCAS Google Scholar
Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell16, 715–724 (2004). ArticleCASPubMed Google Scholar
Syljuasen, R. G., Jensen, S., Bartek, J. & Lukas, J. Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res.66, 10253–10257 (2006). ArticleCASPubMed Google Scholar
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol.19, 238–245 (2007). ArticleCASPubMed Google Scholar
Yoo, H. Y., Kumagai, A., Shevchenko, A. & Dunphy, W. G. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell117, 575–588 (2004). ArticleCASPubMed Google Scholar
Joiner, M. C., Marples, B., Lambin, P., Short, S. C. & Turesson, I. Low-dose hypersensitivity: current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys.49, 379–389 (2001). ArticleCASPubMed Google Scholar
Marples, B., Wouters, B. G., Collis, S. J., Chalmers, A. J. & Joiner, M. C. Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiat. Res.161, 247–255 (2004). ArticleCASPubMed Google Scholar
Short, S. C., Woodcock, M., Marples, B. & Joiner, M. C. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int. J. Radiat. Biol.79, 99–105 (2003). ArticleCASPubMed Google Scholar
Taylor, A. M. R. Aataxia telangiectasia genes and predisposition to leukaemia, lymphoma and breast cancer. Brit. J. Cancer66, 5–9 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kuhne, M. et al. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res.64, 500–508 (2004). ArticlePubMed Google Scholar
Cornforth, M. N. & Bedford, J. S. On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science227, 1589–1591 (1985). ArticleCASPubMed Google Scholar
Pandita, T. K. & Hittelman, W. N. The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat. Res.131, 214–223 (1992). ArticleCASPubMed Google Scholar
Jeggo, P. A., Carr, A. M. & Lehmann, A. R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet.14, 312–316 (1998). ArticleCASPubMed Google Scholar
Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J.25, 5775–5782 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev.14, 1448–1459 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wykes, S. M., Piasentin, E., Joiner, M. C., Wilson, G. D. & Marples, B. Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks. Radiat. Res.165, 516–524 (2006). ArticleCASPubMed Google Scholar
Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell71, 587–597 (1992). ArticleCASPubMed Google Scholar
Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell93, 467–476 (1998). ArticleCASPubMed Google Scholar
Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage-syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell93, 477–486 (1998). ArticleCASPubMed Google Scholar
Berkovich, E., Monnat, R. J. Jr., & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell. Biol.9, 683–690 (2007). ArticleCASPubMed Google Scholar
Gudmundsdottir, K. & Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene25, 5864–5874 (2006). ArticleCASPubMed Google Scholar
Rooney, S. et al. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc. Natl Acad. Sci. USA101, 2410–2415 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature404, 897–900 (2000). ArticleCASPubMed Google Scholar
Linke, S. P., Clarkin, K. C. & Wahl, G. M. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res.57, 1171–1179 (1997). CASPubMed Google Scholar
Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci USA93, 4827–4832 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bartek, J. & Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell. Biol.13, 738–747 (2001). ArticleCASPubMed Google Scholar
d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194–198 (2003). ArticleCASPubMed Google Scholar
Xu, B., Kim, S. T., Lim, D. S. & Kastan, M. B. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol. Cell. Biol.22, 1049–1059 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, X., Khadpe, J., Hu, B., Iliakis, G. & Wang, Y. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. J. Biol. Chem.278, 30869–30874 (2003). ArticleCASPubMed Google Scholar
Krempler, A., Deckbar, D., Jeggo, P. A. & Lobrich, M. An Imperfect G(2)/M Checkpoint Contributes to Chromosome Instability Following Irradiation of S and G(2) Phase Cells. Cell Cycle6, 1682–1686 (2007). ArticleCASPubMed Google Scholar
Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell. Biol.8, 37–45 (2006). ArticleCASPubMed Google Scholar
Chun, H. H. & Gatti, R. A. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst.)3, 1187–1196 (2004). ArticleCAS Google Scholar
Moshous, D. et al. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J. Clin. Invest.111, 381–387 (2003). ArticleCASPubMedPubMed Central Google Scholar
Buck, D. et al. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur. J. Immunol.36, 224–235 (2006). ArticleCASPubMed Google Scholar
Shivji, M. K. & Venkitaraman, A. R. DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst.)3, 835–843 (2004). ArticleCAS Google Scholar
Risinger, M. A. & Groden, J. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell6, 539–545 (2004). CASPubMed Google Scholar
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science300, 1542–1548 (2003). ArticleCASPubMed Google Scholar
Zou, L., Liu, D. & Elledge, S. J. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl Acad. Sci. USA100, 13827–13832 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science288, 1425–1429 (2000). ArticleCASPubMed Google Scholar
Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell6, 649–659 (2000). ArticleCASPubMed Google Scholar
Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V. & Kastan, M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl Acad. Sci. USA89, 7491–7495 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hermeking, H. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell1, 3–11 (1997). ArticleCASPubMed Google Scholar
Hefferin, M. L. & Tomkinson, A. E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst.)4, 639–648 (2005). ArticleCAS Google Scholar
Jeggo, P. A. & Lobrich, M. Radiation induced DNA damage responses. Rad. Prot. Dosim.122, 124–127 (2006). ArticleCAS Google Scholar
Kruger, I., Rothkamm, K. & Lobrich, M. Enhanced fidelity for rejoining radiation-induced DNA double-strand breaks in the G2 phase of Chinese hamster ovary cells. Nucleic Acids Res.32, 2677–2684 (2004). ArticlePubMedPubMed Central Google Scholar
Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet.40, 363–383 (2006). ArticleCASPubMed Google Scholar
Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol.23, 5706–5715 (2003). ArticleCASPubMedPubMed Central Google Scholar
Saleh-Gohari, N. et al. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol. Cell. Biol.25, 7158–7169 (2005). ArticleCASPubMedPubMed Central Google Scholar
O'Driscoll, M. et al. DNA Ligase IV mutations identified in patients exhibiting development delay and immunodeficiency. Mol. Cell8, 1175–1185 (2001). ArticleCASPubMed Google Scholar
Lobrich, M. & Jeggo, P. A. Harmonising the response to DSBs: a new string in the ATM bow. DNA Repair (Amst.)4, 749–759 (2005). ArticleCAS Google Scholar
Wang, J. et al. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst.)4, 556–570 (2005). ArticleCAS Google Scholar
Darroudi, F. et al. Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle. Mutat. Res.615, 111–124 (2007). ArticleCASPubMed Google Scholar
West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell. Biol.4, 435–445 (2003). ArticleCAS Google Scholar
UNSCEAR. 565–571 (United Nations, New York, 1988).
Brenner, D. J. et al. Cancer risks attribuw to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA100, 13761–13766 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cardis, E. et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res.167, 396–416 (2007). ArticleCASPubMed Google Scholar
Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. & Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res.160, 381–407 (2003). ArticleCASPubMed Google Scholar