Integrins in angiogenesis and lymphangiogenesis (original) (raw)
Carmeliet, P. Angiogenesis in life, disease and medicine, Nature42, 932–936 (2005). Google Scholar
Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol.8, 464–478 (2007). CAS Google Scholar
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med.11, 1194–1201 (2001). This article established the concept that bone marrow-derived cells in lung and other tissues could help create an environment that attracts metastatic tumour cells. Google Scholar
Schmid, M. C. & Varner, J. A. Myeloid cell trafficking and tumor angiogenesis. Cancer Lett.250, 1–8 (2007). CASPubMed Google Scholar
Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res.67, 5064–5066 (2007). This article shows that macrophages have crucial roles in altering the fate of tumours by secreting pro-angiogenic growth factors. CASPubMed Google Scholar
Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature438, 967–974 (2005). CASPubMed Google Scholar
Roma, A. A. et. al. Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Mod. Pathol.19, 392–398 (2006). PubMed Google Scholar
Dadras, S. S. et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod. Pathol.18, 1232–1242 (2005). PubMed Google Scholar
Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med.201, 1089–1099 (2005). This article showed for the first time that tumors induce lymphangiogenesis not only in the peritumoural space but also in draining lymph nodes. CASPubMedPubMed Central Google Scholar
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002). CASPubMed Google Scholar
Plow, E. F. et al. Ligand binding to integrins. J. Biol. Chem.275, 21785–21788 (2000). CASPubMed Google Scholar
Haas, T. A. & Plow, E. F. Integrin–ligand interactions: a year in review. Curr Opin Cell Biol.6, 656–662 (1994). CASPubMed Google Scholar
Komoriya, A. et al. The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine–aspartic acid–valine. J. Biol. Chem.266, 15075–15079 (1991). CASPubMed Google Scholar
Jin, H. & Varner, J. Integrins: roles in cancer development and as treatment targets. Br. J. Cancer90, 561–565 (2004). CASPubMedPubMed Central Google Scholar
Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nature Rev. Mol. Cell. Biol.6, 56–68 (2005). CAS Google Scholar
Mitra, S. K & Schlaepfer, D. D. Integrin-regulated FAK–Src signaling in normal and cancer cells. Curr. Opin. Cell Biol.18, 516–523 (2006). CASPubMed Google Scholar
Stupack, D. G. Integrins as a distinct subtype of dependence receptors. Cell Death Differ.12, 1021–1030 (2005). CASPubMed Google Scholar
Zhu, J. et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development129, 2891–2903 (2002). This article shows that integrin αvb8 is required for the formation of normal brain blood vessels. CASPubMed Google Scholar
Cheresh, D. A. Human endothelial cells synthesize and express an Arg–Gly–Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl Acad. Sci. USA84, 6471–6475 (1987). CASPubMedPubMed Central Google Scholar
Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science264, 569–571 (1994). This is the first article demonstrating a role for an integrin in angiogenesis. CASPubMed Google Scholar
Brooks, P. C. et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell79, 1157–1164 (1994). CASPubMed Google Scholar
Brooks, P. C. et al. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest.96, 1815–1822 (1995). CASPubMedPubMed Central Google Scholar
Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science270, 1500–1502 (1995). This article established that two unique pathways of angiogenesis are regulated by two distinct αv integrins. CASPubMed Google Scholar
Friedlander, M. et al. Involvement of integrins αvβ3 and αvβ5 in ocular neovascular diseases. Proc. Natl Acad. Sci. USA93, 9764–9769 (1996). CASPubMedPubMed Central Google Scholar
Friedlander, M. et al. Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest. Ophthalmol. Vis. Sci.48, 5184–5190 (2007). Google Scholar
Drake, C. J., Cheresh, D. A. & Little, C. D. An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci.108, 2655–2661 (1995). CASPubMed Google Scholar
Strömblad, S., Becker, J. C., Yebra, M., Brooks, P. C. & Cheresh. D. A. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. J. Clin. Invest.98, 426–433 (1996). PubMedPubMed Central Google Scholar
Stupack, D. G., Puente, X. S., Boutsaboualoy, S., Storgard, C. M. & Cheresh, D. A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol.155, 459–470 (2001). This article established the concept of integrin-mediated death by showing that unligated integrins promote cell death. CASPubMedPubMed Central Google Scholar
Eliceiri, B. P, Klemke, R., Strömblad, S. & Cheresh, D. A. Integrin αvβ3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol.140, 1255–1263 (1998). CASPubMedPubMed Central Google Scholar
Eliceiri, B. P. et al. Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling. J. Cell Biol.157, 149–160 (2002). CASPubMedPubMed Central Google Scholar
Seker, A. et al. Expression of integrins in cerebral arteriovenous and cavernous malformations. Neurosurgery58, 159–168 (2006). PubMed Google Scholar
Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med.1, 1024–1028 (1995). CASPubMed Google Scholar
Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol.167, 223–232 (2004). CASPubMedPubMed Central Google Scholar
Criscuoli, M. L., Nguyen, M. & Eliceiri, B. P. Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood105, 1508–1514 (2005). CASPubMed Google Scholar
Hodivala-Dilke, K. M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest.103, 229–238 (1999). CASPubMedPubMed Central Google Scholar
Weis, S. M. et al. Cooperation between VEGF and β3 integrin during cardiac vascular development. Blood109, 1962–1970 (2007). CASPubMedPubMed Central Google Scholar
Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med.8, 27–34 (2002). CASPubMed Google Scholar
Reynolds, A. R. et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res.64, 8643–8650 (2004). This study established the concept that developmental loss of an integrin could lead to enhanced angiogenesis through compensatory mechanisms. CASPubMed Google Scholar
Huang, X., Griffiths, M., Wu, J., Farese, R. V. Jr & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell Biol.20, 755–759 (2000). This article showed that loss of αvb5 during development has no significant effect on angiogenesis. CASPubMedPubMed Central Google Scholar
Bader, B. L., Rayburn, H., Crowley, D. & Hynes, R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell95, 507–519 (1998). This study shows that αv integrins are essential for development in most animals but that some animals can survivein ovoloss of αv integrins until the early post-natal period. CASPubMed Google Scholar
McCarty, J. H. et al. Selective ablation of α v integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development132, 165–176 (2005). CASPubMed Google Scholar
McCarty, J. H. et al. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. Mol. Cell. Biol.22, 7667–7677 (2002). CASPubMedPubMed Central Google Scholar
Mahabeleshwar, G. H., Feng, W., Phillips, D. R. & Byzova, T. V. Integrin signaling is critical for pathological angiogenesis. J. Exp. Med.203, 2495–2507 (2006). This study shows that animals with an intact but non-functional β3 integrin exhibit defective angiogenesis. CASPubMedPubMed Central Google Scholar
Montgomery, A. M., Reisfeld, R. A. & Cheresh, D. A. Integrin αvβ3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc. Natl Acad. Sci. USA91, 8856–8860 (1994). CASPubMedPubMed Central Google Scholar
Clark, R. A. et al. Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J. Invest. Dermatol.79, 269–276 (1982). CASPubMed Google Scholar
Kim, S., Bell, K., Mousa, S. A. & Varner, J. A. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol.156, 1345–1362 (2000). This is the first article showing a role for integrin α5b1 in angiogenesis. CASPubMedPubMed Central Google Scholar
Liao, Y. F., Gotwals, P. J., Koteliansky, V. E., Sheppard, D. & Van De Water, L. The EIIIA segment of fibronectin is a ligand for integrins α9β1 and α4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem.277, 14467–14474 (2002). CASPubMed Google Scholar
George, E. L., Baldwin, H. S. & Hynes, R. O. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood90, 3073–3081 (1997). CASPubMed Google Scholar
Astrof, S., Crowley, D. & Hynes, R. O. Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev. Biol.311, 11–24 (2007). CASPubMedPubMed Central Google Scholar
Fassler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev.9, 1896–1908 (1995). CASPubMed Google Scholar
Stephens, L. E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev.9, 1883–1895 (1995). CASPubMed Google Scholar
Tanjore, H., Zeisberg, E. M., Gerami-Naini, B. & Kalluri, R. β1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev. Dyn.237, 75–82 (2007). Google Scholar
Bloch, W. et al. β1 integrin is essential for teratoma growth and angiogenesis. J. Cell Biol.139, 265–278 (1997). CASPubMedPubMed Central Google Scholar
Muether, P. S. et al. The role of integrin α5β1 in the regulation of corneal neovascularization. Exp. Eye Res.85, 356–365 (2007). CASPubMed Google Scholar
Boudreau, N. J. & Varner, J. A. The homeobox transcription factor Hox D3 promotes integrin α5β1 expression and function during angiogenesis. J. Biol. Chem.279, 4862–4868 (2004). CASPubMed Google Scholar
Umeda, N. et al. Suppression and regression of choroidal neovascularization by systemic administration of an α5β1 integrin antagonist. Mol. Pharmacol.69, 1820–1828 (2006). CASPubMed Google Scholar
Kim, S., Harris, M. & Varner, J. A. Regulation of integrin αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J. Biol. Chem.275, 33920–33928 (2000). CASPubMed Google Scholar
Kim, S., Bakre, M., Yin, H. & Varner, J. A. Inhibition of endothelial cell survival and angiogenesis by protein kinase, A. J. Clin. Invest.110, 933–941 (2002). CASPubMedPubMed Central Google Scholar
Yang, J. T., Rayburn, H. & Hynes, R. O. Embryonic mesodermal defects in α5 integrin-deficient mice. Development119, 1093–1105 (1993). This article shows that integrin α5 is required during embryonic development of early blood vessels and other tissues. CASPubMed Google Scholar
Taverna, D. & Hynes, R. O. Reduced blood vessel formation and tumor growth in α5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res.61, 5255–5261 (2001). CASPubMed Google Scholar
Francis, S. E. et al. Central roles of α5β1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler. Thromb. Vasc. Biol.22, 927–933 (2002). CASPubMed Google Scholar
Yang, J. T., Rayburn, H. & Hynes, R. O. Cell adhesion events mediated by α 4 integrins are essential in placental and cardiac development. Development121, 549–560 (1995). CASPubMed Google Scholar
Garmy-Susini, B. et al. Integrin α4β1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J. Clin. Invest.115, 1542–1551 (2005). This article demonstrates that integrin α4β1 on endothelium promotes endothelial cell motility and angiogenesis as well as a transient association of pericytes with endothelium. CASPubMedPubMed Central Google Scholar
Vlahakis, N. E. et al. Integrin α9β1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J. Biol. Chem.282, 15187–15196 (2007). CASPubMed Google Scholar
Staniszewska, I. et al. Interaction of α9β1 integrin with thrombospondin-1 promotes angiogenesis. Circ. Res.100, 1308–1316 (2007). CASPubMed Google Scholar
Liao, Y. F. et al. The EIIIA segment of fibronectin is a ligand for integrins α9β1 and α4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem.277, 14467–14474 (2002). CASPubMed Google Scholar
Marcinkiewicz, C. et al. Inhibitory effects of MLDG-containing heterodimeric disintegrins reveal distinct structural requirements for interaction of the integrin α9β1 with VCAM-1, tenascin-C, and osteopontin. J. Biol. Chem.275, 31930–31937 (2000). CASPubMed Google Scholar
Huang, X. Z. et al. Fatal bilateral chylothorax in mice lacking the integrin α9β1. Mol. Cell. Biol.20, 5208–5215 (2000). This study demonstrates that integrin α9b1 is required for proper development of the lymphatic system. CASPubMedPubMed Central Google Scholar
Senger, D. R. et al. Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc. Natl Acad. Sci. USA94, 13612–13617 (1997). CASPubMedPubMed Central Google Scholar
Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1-knockout mice cause reduced tumor vascularization. Proc. Natl Acad. Sci. USA97, 2202–2207 (2000). CASPubMedPubMed Central Google Scholar
Zhang, Z. et al. α2β1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor-cell specific manner. Blood111, 1980–1988 (2008). This paper shows that integrin α2b1-null mice exhibit distinct tumour growth patterns that are dependent upon the growth factors that are intrinsically expressed by individual tumour cells. CASPubMedPubMed Central Google Scholar
Lee, T. H. et al. Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of α6β1 integrin in angiogenesis. J. Biol. Chem.281, 40450–40460 (2006). CASPubMed Google Scholar
Nikolopoulos, S. N., Blaikie, P., Yoshioka, T., Guo, W. & Giancotti, F. G. Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell6, 471–483 (2004). This paper shows the important role of integrin α6b4 in angiogenesis. CASPubMed Google Scholar
van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin β4-null mice. Nature Genet.13, 366–369 (1996). CASPubMed Google Scholar
Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet.13, 370–373 (1996). CASPubMed Google Scholar
Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol.134, 559–572 (1996). CASPubMed Google Scholar
Dans, M., et al. Tyrosine phosphorylation of the β4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. J. Biol. Chem.276, 1494–1502 (2001). CASPubMed Google Scholar
Leu, S. J. et al. Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61). J. Biol. Chem.278, 33801–33808 (2003). CASPubMed Google Scholar
Jin, H. et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest.116, 652–662 (2006). This paper shows that integrin α4b1 on bone marrow-derived cells promotes monocyte and endothelial precursor cell homing to tumours. CASPubMedPubMed Central Google Scholar
Jin, H., Su, J., Garmy-Susini, B., Kleeman, J. & Varner, J. Integrin α4β1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res.66, 2146–2152 (2006). CASPubMed Google Scholar
Wu, Y. et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ. Res.99, 315–322 (2006). CASPubMed Google Scholar
Chavakis, E. et al. Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med.1, 63–72 (2005). Google Scholar
Kopp, H. G. & Rafii, S. Thrombopoietic cells and the bone marrow vascular niche. Ann. NY Acad. Sci.1106, 175–179 (2007). CASPubMed Google Scholar
Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol.144, 789–801 (1999). CASPubMedPubMed Central Google Scholar
Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). CASPubMed Google Scholar
Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol.154, 385–394 (1999). CASPubMedPubMed Central Google Scholar
Mishima, K. et al. Prox1 induces lymphatic endothelial differentiation via integrin α9 and other signaling cascades. Mol. Biol. Cell.18, 1421–1429 (2007). CASPubMedPubMed Central Google Scholar
Vlahakis, N. E., Young, B. A., Atakilit, A. & Sheppard, D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin α9β1. J. Biol. Chem.280, 4544–4552 (2005). CASPubMed Google Scholar
Hong, Y. K. et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the α1β1 and α2β1 integrins. FASEB J.18, 1111–1113 (2004). This article established the role of integrins α1b1 and α2b1 in lymphangiogenesis. CASPubMed Google Scholar
Dietrich, T. et al. Inhibition of inflammatory lymphangiogenesis by integrin α5 blockade. Am. J. Pathol.171, 361–372 (2007). CASPubMedPubMed Central Google Scholar
Garmy-Susini, B., Makale, M., Fuster, M. & Varner, J. A. Methods to study lymphatic vessel integrins. Methods Enzymol.426, 415–438 (2007). CASPubMed Google Scholar
Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res.6, 3056–3061 (2000). CASPubMed Google Scholar
McNeel, D. G. et al. Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res.11, 7851–7860 (2005). CASPubMed Google Scholar
Hersey, P. et al. A phase II, randomized, open-label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human αvβ3 (αvβ3) integrin, ± dacarbazine (DTIC) in patients with metastatic melanoma. J. Clin. Oncol.2005 ASCO Annu. Meeting Proc.23, 7507 (2005). Google Scholar
Zhang, D., Pier, T., McNeel, D. G., Wilding, G. & Friedl, A. Effects of a monoclonal anti-αvβ3 integrin antibody on blood vessels — a pharmacodynamic study. Invest. New Drugs25, 49–55 (2007). CASPubMed Google Scholar
Trikha, M. et al. CNTO 95, a fully human monoclonal antibody that inhibits αv integrins, has antitumor and antiangiogenic activity in vivo. Int. J. Cancer110, 326–335 (2004). CASPubMed Google Scholar
Martin, P. L. et al. Absence of adverse effects in cynomolgus macaques treated with CNTO 95, a fully human anti-αv integrin monoclonal antibody, despite widespread tissue binding. Clin. Cancer Res.11, 6959–6965 (2005). CASPubMed Google Scholar
Mullamitha, S. A. et al. Phase I evaluation of a fully human anti-αv integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin. Cancer Res.13, 2128–2135 (2007). CASPubMed Google Scholar
Brooks, P. C. et al. Insulin-like growth factor receptor cooperates with integrin αvβ5 to promote tumor cell dissemination in vivo. J. Clin. Invest.99, 1390–1398 (1997). CASPubMedPubMed Central Google Scholar
Nabors, L. B. et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol.25, 1651–1657 (2007). CASPubMed Google Scholar
Albert, J. M. et al. Integrin α v β 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int. J. Radiat. Oncol. Biol. Phys.65, 1536–1543 (2006). CASPubMed Google Scholar
Friess, H. et al. A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer6, 285 (2006). PubMedPubMed Central Google Scholar
Beekman, K. W. et al. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin. Genitourin. Cancer4, 299–302 (2006). CASPubMed Google Scholar
Bradley, D. A. et. al. EMD121974 (NSC 707544, cilengitide) in asymptomatic metastatic androgen independent prostate cancer (AIPCa) patients (pts): A randomized trial by the Prostate Cancer Clinical Trials Consortium (NCI 6372). J. Clin. Oncol. 2007 ASCO Annu. Meeting Proc.25, 5137 (2007). Google Scholar
Figlin, R. A., Kondagunta, G. V., Yazji, S., Motzer, R. J. & Bukowski, R. M. Phase II study of volociximab (M200), an α5β1 anti-integrin antibody in refractory metastatic clear cell renal cell cancer (RCC). J. Clin. Oncol. ASCO Annu. Meeting Proc.24, 4535 (2006). Google Scholar
Kuwada, S. K. Drug evaluation: Volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr. Opin. Mol. Ther.9, 92–98 (2007). CASPubMed Google Scholar
Stoeltzing, O. et al. Inhibition of integrin α5β1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int. J. Cancer104, 496–503 (2003). CASPubMed Google Scholar
Cianfrocca, M. E. et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a β integrin antagonist, in patients with solid tumours. Br. J. Cancer94, 1621–1626 (2006). CASPubMedPubMed Central Google Scholar
Lim, E. H., Danth, N., Bednarski, M. & Li, K. C. A review: Integrin αvβ3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine1, 110–114 (2005). CASPubMed Google Scholar
Garanger, E., Boturyn, D. & Dumy, P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med. Chem.7, 552–558 (2007). CASPubMed Google Scholar
Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Med.4, 623–626 (1998). CASPubMed Google Scholar
Leong-Poi, H. et al. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation107, 455–460 (2003). CASPubMed Google Scholar
Hood, J. D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science296, 2404–2407 (2002). This landmark paper established the potential of integrin-targeted nanoparticles in cancer therapy. CASPubMed Google Scholar
Arnaout, M. A., Mahalingam, B. & Xiong, J. P. Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol.21, 381–410 (2005). CASPubMed Google Scholar
Lu, C., Takagi, J. & Springer, T. A. Association of the membrane proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem.276, 14642–14648 (2001). CASPubMed Google Scholar
Beglova, N., Blacklow, S. C., Takagi, J. & Springer, T. A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct. Biol.9, 282–287 (2002). CASPubMed Google Scholar
Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face. Cell110, 587–597 (2002). CASPubMed Google Scholar
Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med.192, 495–506 (2000). CASPubMedPubMed Central Google Scholar
O'Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol.124, 1047–1059 (1994). CASPubMed Google Scholar
Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res.66, 11238–11246 (2006). CASPubMed Google Scholar
Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res.67, 5064–5066 (2007). CASPubMed Google Scholar
Peng, X. et al. Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice. Cardiovasc. Res.64, 421–430 (2004). CASPubMed Google Scholar
Shen, T. L. et al. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J. Cell Biol.169, 941–952 (2005). CASPubMedPubMed Central Google Scholar
Lai, K. M. & Pawson, T. The ShcA phosphotyrosine docking protein sensitizes cardiovascular signaling in the mouse embryo. Genes Dev.14, 1132–1145 (2000). CASPubMedPubMed Central Google Scholar
Bolat, F. et al. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J. Exp. Clin. Cancer Res.25, 365–372 (2006). CASPubMed Google Scholar
Tsutsui, S. et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol. Rep.14, 425–431 (2005). CASPubMed Google Scholar
Valkovi´c, T. et al. Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch.440, 583–588 (2002). Google Scholar
Esposito, I. et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinomas. J. Clin. Pathol.6, 630–636 (2004). Google Scholar
Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia2, 177–189 (2002). Google Scholar
Nishie, A. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res.5, 1107–1113 (1999). CASPubMed Google Scholar
Yamashiro, S. et al. Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am. J. Pathol.4, 856–867 (1994). Google Scholar
Lewis, J. S. et al. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J. Pathol.2, 150–158 (2000). Google Scholar
Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest.117, 1155–1166 (2007). CASPubMedPubMed Central Google Scholar
Jodele, S. et al. The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res.65, 3200–3208 (2005). CASPubMed Google Scholar
Giraudo, E., Inoue, M. & Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest.5, 623–633 (2004). Google Scholar
Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res.8, 3282–3289 (2000). Google Scholar
Niwa, Y. et al. Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin. Cancer Res.2, 285–289 (2001). Google Scholar
Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood8, 2224–2234 (2004). Google Scholar
Gerszten, R. E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature398, 718–723 (1999). CASPubMed Google Scholar
Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res.12, 5278–5283 (2005). Google Scholar
Luo, J. L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature446, 690–694 (2007). CASPubMed Google Scholar
Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004). CASPubMed Google Scholar
Sansone, P. et al. Il-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest.117, 3988–4002 (2007). CASPubMedPubMed Central Google Scholar
Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas J. Clin. Invest.117, 3846–3856 (2007). CASPubMedPubMed Central Google Scholar
Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med.6, 727–740 (2001). Google Scholar
Lu, H. et al. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J. Clin. Invest.99, 1340–1350 (1997). CASPubMedPubMed Central Google Scholar