Colonic crypt organization and tumorigenesis (original) (raw)
Moolgavkar, S. H. & Luebeck, E. G. Multistage carcinogenesis and the incidence of human cancer. Genes Chromosomes Cancer38, 302–306 (2003). CASPubMed Google Scholar
Dakubo, G. D., Jakupciak, J. P., Birch-Machin, M. A. & Parr, R. L. Clinical implications and utility of field cancerization. Cancer Cell Int.7, 2 (2007). PubMedPubMed Central Google Scholar
Vatve, M., Ortonne, J. P., Birch-Machin, M. A. & Gupta, G. Management of field change in actinic keratosis. Br. J. Dermatol.157 (Suppl 2), 21–24 (2007). CASPubMed Google Scholar
Loeffler, M. et al. Dose–response relationship of complementary radiotherapy following four cycles of combination chemotherapy in intermediate-stage Hodgkin's disease. J. Clin. Oncol.15, 2275–2287 (1997). CASPubMed Google Scholar
Hornick, J. L. & Odze, R. D. Neoplastic precursor lesions in Barrett's esophagus. Gastroenterol. Clin. North Am.36, 775–796 (2007). PubMed Google Scholar
Boland, C. R. & Goel, A. Somatic evolution of cancer cells. Semin. Cancer Biol.15, 436–450 (2005). CASPubMed Google Scholar
Durie, B. G. & Salmon, S. E. Cell kinetic analysis of human tumor stem cells. Prog. Clin. Biol. Res.48, 153–163 (1980). CASPubMed Google Scholar
Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell Biol.27, 7551–7559 (2007). CASPubMedPubMed Central Google Scholar
Kosinski, C. et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc. Natl Acad. Sci. USA104, 15418–15423 (2007). CASPubMedPubMed Central Google Scholar
Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Rev. Genet.7, 349–359 (2006). CASPubMed Google Scholar
van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature435, 959–963 (2005). CASPubMed Google Scholar
Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell111, 251–263 (2002). CASPubMed Google Scholar
Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat.141, 537–561 (1974). CASPubMed Google Scholar
Ponder, B. A. et al. Derivation of mouse intestinal crypts from single progenitor cells. Nature313, 689–691 (1985). Provided evidence that, in the mouse, intestinal crypts are clonal populations derived from a multipotential stem cell CASPubMed Google Scholar
Thompson, M. et al. Gastric endocrine cells share a clonal origin with other gut cell lineages. Development110, 477–481 (1990). CASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology116, 7–14 (1999). CASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Multipotential stem cells in adult mouse gastric epithelium. Am. J. Physiol. Gastrointest. Liver Physiol.283, G767–G777 (2002). CASPubMed Google Scholar
Dekaney, C. M., Rodriguez, J. M., Graul, M. C. & Henning, S. J. Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology129, 1567–1580 (2005). CASPubMed Google Scholar
May, R. et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells26, 630–637 (2008). PubMed Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). A key paper that identifiedLgr5as a marker for intestinal cells capable of clonal conversion, that is, stem cells, in a mouse model. CASPubMed Google Scholar
Qiao, X. T. et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology133, 1989–1998 (2007). CASPubMed Google Scholar
Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science272, 1187–1190 (1996). This paper demonstrated that human colonic crypts are clonal populations; adenomas were found to be predominantly polyclonal. CASPubMed Google Scholar
Novelli, M. et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. USA100, 3311–3314 (2003). CASPubMedPubMed Central Google Scholar
Campbell, F. et al. Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut39, 569–573 (1996). CASPubMedPubMed Central Google Scholar
Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest.112, 1351–1360 (2003). CASPubMedPubMed Central Google Scholar
McDonald, S. A. et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology134, 500–510 (2008). CASPubMed Google Scholar
Meineke, F. A., Potten, C. S. & Loeffler, M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif.34, 253–266 (2001). CASPubMedPubMed Central Google Scholar
Ohlstein, B., Kai, T., Decotto, E. & Spradling, A. The stem cell niche: theme and variations. Curr. Opin. Cell Biol.16, 693–699 (2004). CASPubMed Google Scholar
Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol.21, 605–631 (2005). CASPubMed Google Scholar
Yamashita, Y. M., Fuller, M. T. & Jones, D. L. Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci.118, 665–672 (2005). CASPubMed Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science290, 328–330 (2000). CASPubMed Google Scholar
Kim, K. M. & Shibata, D. Methylation reveals a niche: stem cell succession in human colon crypts. Oncogene21, 5441–5449 (2002). This paper provides valuable insights into the dynamics of the stem cell niche in humans. CASPubMed Google Scholar
Nicolas, P., Kim, K. M., Shibata, D. & Tavare, S. The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput. Biol.3, e28 (2007). PubMedPubMed Central Google Scholar
Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B. & Issa, J. P. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res.58, 5489–5494 (1998). CASPubMed Google Scholar
Issa, J. P. CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol.249, 101–118 (2000). CASPubMed Google Scholar
Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus. Cancer Res.64, 3414–3427 (2004). CASPubMed Google Scholar
Kodama, M. et al. Expression of mutant type-p53 products in _H. pylori_-associated chronic gastritis. World J. Gastroenterol.13, 1541–1546 (2007). PubMedPubMed Central Google Scholar
Liu, Q. et al. CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer. Mod. Pathol.20, 1286–1297 (2007). CASPubMed Google Scholar
Bernstein, C. N. Neoplasia in inflammatory bowel disease: surveillance and management strategies. Curr. Gastroenterol. Rep.8, 513–518 (2006). PubMed Google Scholar
Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol.287, G7–G17 (2004). CASPubMed Google Scholar
Brentnall, T. A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology107, 369–378 (1994). CASPubMed Google Scholar
Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol.170, 721–732 (2005). CASPubMedPubMed Central Google Scholar
Burmer, G. C. et al. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterology103, 1602–1610 (1992). CASPubMed Google Scholar
Levine, D. S. et al. Distribution of aneuploid cell populations in ulcerative colitis with dysplasia or cancer. Gastroenterology101, 1198–1210 (1991). CASPubMed Google Scholar
Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA103, 714–719 (2006). Compelling evidence that crypt fission is the mechanism by which human colonic crypts divide. CASPubMedPubMed Central Google Scholar
Ushijima, T. Epigenetic field for cancerization. J. Biochem. Mol. Biol.40, 142–150 (2007). CASPubMed Google Scholar
Maley, C. C. Multistage carcinogenesis in Barrett's esophagus. Cancer Lett.245, 22–32 (2007). CASPubMed Google Scholar
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer6, 924–935 (2006). CAS Google Scholar
Coad, R. A. et al. On the histogenesis of Barrett's oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J. Pathol.206, 388–394 (2005). PubMed Google Scholar
Wasan, H. S. et al. APC in the regulation of intestinal crypt fission. J. Pathol.185, 246–255 (1998). CASPubMed Google Scholar
Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med.319, 525–532 (1988). CASPubMed Google Scholar
Boman, B. M. et al. Colonic crypt changes during adenoma development in familial adenomatous polyposis: immunohistochemical evidence for expansion of the crypt base cell population. Am. J. Pathol.165, 1489–1498 (2004). PubMedPubMed Central Google Scholar
Loeffler, M., Bratke, T., Paulus, U., Li, Y. Q. & Potten, C. S. Clonality and life cycles of intestinal crypts explained by a state dependent stochastic model of epithelial stem cell organization. J. Theor. Biol.186, 41–54 (1997). CASPubMed Google Scholar
Lamlum, H. et al. APC mutations are sufficient for the growth of early colorectal adenomas. Proc. Natl Acad. Sci. USA97, 2225–2228 (2000). CASPubMedPubMed Central Google Scholar
Luebeck, E. G. & Moolgavkar, S. H. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl Acad. Sci. USA99, 15095–15100 (2002). CASPubMedPubMed Central Google Scholar
Nakamura, S. & Kino, I. Morphogenesis of minute adenomas in familial polyposis coli. J. Natl Cancer Inst.73, 41–49 (1984). CASPubMed Google Scholar
Woda, B. A., Forde, K. & Lane, N. A unicryptal colonic adenoma, the smallest colonic neoplasm yet observed in a non-polyposis individual. Am. J. Clin. Pathol.68, 631–632 (1977). CASPubMed Google Scholar
Preston, S. L. et al. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res.63, 3819–3825 (2003). Conclusive proof that crypt fission is the predominant mode of spread of adenomatous crypts. CASPubMed Google Scholar
Wong, W. M. et al. Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission. Gut50, 212–217 (2002). PubMedPubMed Central Google Scholar
van den Brink, G. R. & Offerhaus, G. J. The morphogenetic code and colon cancer development. Cancer Cell11, 109–117 (2007). CASPubMed Google Scholar
Roncucci, L., Medline, A. & Bruce, W. R. Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol. Biomarkers Prev.1, 57–60 (1991). CASPubMed Google Scholar
Jen, J. et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res.54, 5523–5526 (1994). CASPubMed Google Scholar
Takayama, T. et al. Analysis of K-ras, APC, and β-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology121, 599–611 (2001). CASPubMed Google Scholar
Jass, J. R., Whitehall, V. L., Young, J. & Leggett, B. A. Emerging concepts in colorectal neoplasia. Gastroenterology123, 862–876 (2002). CASPubMed Google Scholar
Tsao, J. L. et al. Tracing cell fates in human colorectal tumors from somatic microsatellite mutations: evidence of adenomas with stem cell architecture. Am. J. Pathol.153, 1189–1200 (1998). CASPubMedPubMed Central Google Scholar
Fialkow, P. J. Clonal origin of human tumors. Biochim. Biophys. Acta458, 283–321 (1976). CASPubMed Google Scholar
Hsu, S. H., Luk, G. D., Krush, A. J., Hamilton, S. R. & Hoover, H. H. Jr. Multiclonal origin of polyps in Gardner syndrome. Science221, 951–953 (1983). CASPubMed Google Scholar
Newton, M. A. On estimating the polyclonal fraction in lineage-marker studies of tumor origin. Biostatistics7, 503–514 (2006). PubMed Google Scholar
Merritt, A. J., Gould, K. A. & Dove, W. F. Polyclonal structure of intestinal adenomas in ApcMin/+ mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl Acad. Sci. USA94, 13927–13931 (1997). CASPubMedPubMed Central Google Scholar
Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. USA103, 13474–13479 (2006). CASPubMedPubMed Central Google Scholar
Thliveris, A. T. et al. Polyclonality of familial murine adenomas: analyses of mouse chimeras with low tumor multiplicity suggest short-range interactions. Proc. Natl Acad. Sci. USA102, 6960–6965 (2005). CASPubMedPubMed Central Google Scholar
Ishiguro, K., Yoshida, T., Yagishita, H., Numata, Y. & Okayasu, T. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut55, 695–702 (2006). CASPubMedPubMed Central Google Scholar
Bian, Y. et al. Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum. Mol. Genet.16, 3128–3135 (2007). CASPubMed Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). CASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). CASPubMed Google Scholar
Lamprecht, S. A. & Lipkin, M. Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis23, 1777–1780 (2002). CASPubMed Google Scholar
Makino, T. et al. Primary signet-ring cell carcinoma of the colon and rectum: report of eight cases and review of 154 Japanese cases. Hepatogastroenterology53, 845–849 (2006). PubMed Google Scholar
Vogelsang, H. & Siewert, J. R. Endocrine tumours of the hindgut. Best Pract. Res. Clin. Gastroenterol.19, 739–751 (2005). CASPubMed Google Scholar
Rubio, C. A., Kanter, L., Bjork, J., Poppen, B. & Bry, L. Paneth cell-rich flat adenoma of the rectum: report of a case. Jpn. J. Cancer Res.87, 109–112 (1996). CASPubMedPubMed Central Google Scholar
Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res.48, 1996–2004 (1988). CASPubMed Google Scholar
Houghton, J. & Wang, T. C. Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology128, 1567–1578 (2005). CASPubMed Google Scholar
Park, H. S., Goodlad, R. A. & Wright, N. A. Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am. J. Pathol.147, 1416–1427 (1995). CASPubMedPubMed Central Google Scholar
Williams, E. D., Lowes, A. P., Williams, D. & Williams, G. T. A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am. J. Pathol.141, 773–776 (1992). A seminal paper that first proposed the theory that intestinal crypts contain multiple stem cells housed within a stem cell niche. CASPubMedPubMed Central Google Scholar
Yatabe, Y., Tavare, S. & Shibata, D. Investigating stem cells in human colon by using methylation patterns. Proc. Natl Acad. Sci. USA98, 10839–10844 (2001). CASPubMedPubMed Central Google Scholar
Cheng, H., Bjerknes, M., Amar, J. & Gardiner, G. Crypt production in normal and diseased human colonic epithelium. Anat. Rec.216, 44–48 (1986). CASPubMed Google Scholar
Totafurno, J., Bjerknes, M. & Cheng, H. The crypt cycle. Crypt and villus production in the adult intestinal epithelium. Biophys. J.52, 279–294 (1987). CASPubMedPubMed Central Google Scholar
Kim, K. M. & Shibata, D. Tracing ancestry with methylation patterns: most crypts appear distantly related in normal adult human colon. BMC Gastroenterol.4, 8 (2004). PubMedPubMed Central Google Scholar