Telomere dysfunction and tumour suppression: the senescence connection (original) (raw)
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961). A classic paper demonstrating that human cells have finite proliferative capacityin vitro(the 'Hayflick limit'). CASPubMed Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). This paper reports on the SA-β-gal assay as a way to mark senescent cells. CASPubMedPubMed Central Google Scholar
Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349–352 (1998). CASPubMed Google Scholar
Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol.8, 279–282 (1998). CASPubMed Google Scholar
Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science297, 565–569 (2002). CASPubMed Google Scholar
Masutomi, K. et al. Telomerase maintains telomere structure in normal human cells. Cell114, 241–253 (2003). CASPubMed Google Scholar
Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet.18, 173–179 (1996). CASPubMed Google Scholar
Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature345, 458–460 (1990). This report links increasing telomere attrition with increased cell divisions and advancing age, suggesting that telomere shortening may be the underlying mechanism of the Hayflick limit. CASPubMed Google Scholar
Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992). CASPubMedPubMed Central Google Scholar
Harley, C. B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol.59, 307–315 (1994). CASPubMed Google Scholar
Blasco, M. A. Telomere length, stem cells and aging. Nature Chem. Biol.3, 640–649 (2007). CAS Google Scholar
Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell97, 503–514 (1999). CASPubMed Google Scholar
de Lange, T. T-loops and the origin of telomeres. Nature Rev. Mol. Cell Biol.5, 323–329 (2004). CAS Google Scholar
de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev.19, 2100–2110 (2005). CASPubMed Google Scholar
Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem.279, 51338–51342 (2004). CASPubMed Google Scholar
Verdun, R. E. & Karlseder, J. Replication and protection of telomeres. Nature447, 924–931 (2007). CASPubMed Google Scholar
Corneo, B. et al. Rag mutations reveal robust alternative end joining. Nature449, 483–486 (2007). CASPubMed Google Scholar
Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature449, 478–482 (2007). CASPubMed Google Scholar
Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev.21, 2495–2508 (2007). CASPubMedPubMed Central Google Scholar
DePinho, R. A. & Polyak, K. Cancer chromosomes in crisis. Nature Genet.36, 932–934 (2004). CASPubMed Google Scholar
d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194–198 (2003). CASPubMed Google Scholar
Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol.13, 1549–1556 (2003). References 22 and 23 report that dysfunctional telomeres activate a DDR, resulting in the accumulation of DDR proteins at telomeres. Cells with dysfunctional telomeres enter into senescence by activating a p53-dependent checkpoint response. CASPubMed Google Scholar
Wright, W. E. & Shay, J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol.27, 383–389 (1992). This paper documents that DNA damage checkpoint proteins such as p53 and RB are required for cells with shortened telomeres to undergo cellular senescence. Elimination of these proteins enables these cells to immortalize. CASPubMed Google Scholar
Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19_ARF_. Cell91, 649–659 (1997). CASPubMed Google Scholar
Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature424, 223–228 (2003). CASPubMed Google Scholar
Guo, X. et al. Dysfunctional telomeres activate an ATM–ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J.26, 4709–4719 (2007). CASPubMedPubMed Central Google Scholar
Churikov, D. & Price, C. M. Pot1 and cell cycle progression cooperate in telomere length regulation. Nature Struct. Mol. Biol.15, 79–84 (2008). CAS Google Scholar
Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J. M. & Dulic, V. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J.23, 2554–2563 (2004). CASPubMedPubMed Central Google Scholar
Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature448, 1068–1071 (2007). CASPubMed Google Scholar
Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature392, 569–574 (1998). CASPubMed Google Scholar
Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999). CASPubMed Google Scholar
Rajaraman, S. et al. Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo. Proc. Natl Acad. Sci. USA104, 17747–17752 (2007). CASPubMedPubMed Central Google Scholar
Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun.179, 528–534 (1991). CASPubMed Google Scholar
Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res.196, 33–39 (1991). CASPubMed Google Scholar
Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J.11, 1921–1929 (1992). CASPubMedPubMed Central Google Scholar
Shay, J. W., Van Der Haegen, B. A., Ying, Y. & Wright, W. E. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res.209, 45–52 (1993). CASPubMed Google Scholar
Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science266, 2011–2015 (1994). CASPubMed Google Scholar
Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med.3, 1271–1274 (1997). CASPubMed Google Scholar
Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer33, 787–791 (1997). CASPubMed Google Scholar
Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science269, 1267–1270 (1995). CASPubMed Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997). CASPubMed Google Scholar
Herrera, E., Martinez, A. C. & Blasco, M. A. Impaired germinal center reaction in mice with short telomeres. EMBO J.19, 472–481 (2000). CASPubMedPubMed Central Google Scholar
Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev.22, 654–667 (2008). CASPubMedPubMed Central Google Scholar
Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature447, 725–729 (2007). CASPubMed Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). CASPubMed Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). CASPubMed Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). CASPubMed Google Scholar
Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 cancer-prone mouse. Cell97, 515–525 (1999). CASPubMed Google Scholar
Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet.26, 114–117 (2000). CASPubMed Google Scholar
Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet.28, 155–159 (2001). CASPubMed Google Scholar
Dove, W. F. et al. The intestinal epithelium and its neoplasms: genetic, cellular and tissue interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci.353, 915–923 (1998). CASPubMedPubMed Central Google Scholar
Farazi, P. A. et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res.63, 5021–5027 (2003). CASPubMed Google Scholar
Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature436, 642 (2005). CASPubMed Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436, 660–665 (2005). CASPubMed Google Scholar
Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell130, 223–233 (2007). CASPubMed Google Scholar
Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell11, 461–469 (2007). CASPubMedPubMed Central Google Scholar
Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep.8, 497–503 (2007). Using telomerase-knockout mouse models in a setting in which the apoptotic function of p53 is eliminated, references 57 and 58 document for the first time that activation of the cellular senescence programme could potently inhibit tumour initiation and progressionin vivo. CASPubMedPubMed Central Google Scholar
Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet.36, 63–68 (2004). CASPubMed Google Scholar
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature445, 661–665 (2007). CASPubMed Google Scholar
Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet.39, 99–105 (2007). CASPubMed Google Scholar
Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature448, 767–774 (2007). CASPubMed Google Scholar
Harley, C. B. Telomerase and cancer therapeutics. Nature Rev. Cancer8, 167–179 (2008). CAS Google Scholar
Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J.20, 6958–6968 (2001). CASPubMedPubMed Central Google Scholar
Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res.65, 7866–7873 (2005). CASPubMed Google Scholar
Djojosubroto, M. W. et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology42, 1127–1136 (2005). CASPubMed Google Scholar
Hochreiter, A. E. et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin. Cancer Res.12, 3184–3192 (2006). CASPubMed Google Scholar
Jackson, S. R. et al. Antiadhesive effects of GRN163L — an oligonucleotide N3′→P5′ thio-phosphoramidate targeting telomerase. Cancer Res.67, 1121–1129 (2007). CASPubMed Google Scholar
Ozawa, T. et al. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro Oncol.6, 218–226 (2004). CASPubMedPubMed Central Google Scholar
Salvati, E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest.117, 3236–3247 (2007). CASPubMedPubMed Central Google Scholar
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell120, 513–522 (2005). CASPubMed Google Scholar
Chin, K. et al. In situ analyses of genome instability in breast cancer. Nature Genet.36, 984–988 (2004). CASPubMed Google Scholar
Meeker, A. K. et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin. Cancer Res.10, 3317–3326 (2004). CASPubMed Google Scholar
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature434, 864–870 (2005). CASPubMed Google Scholar
Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature434, 907–913 (2005). CASPubMed Google Scholar
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA98, 12072–12077 (2001). CASPubMedPubMed Central Google Scholar
Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science292, 1171–1175 (2001). CASPubMed Google Scholar
He, H. et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J.25, 5180–5190 (2006). CASPubMedPubMed Central Google Scholar
Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature423, 1013–1018 (2003). CASPubMed Google Scholar
Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell126, 49–62 (2006). CASPubMed Google Scholar
Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature445, 506–510 (2007). CASPubMed Google Scholar
Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature445, 559–562 (2007). CASPubMed Google Scholar
Hockemeyer, D., Daniels, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell126, 63–77 (2006). CASPubMed Google Scholar
Hockemeyer, D. et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nature Struct. Mol. Biol.14, 754–761 (2007). CAS Google Scholar
Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biol.7, 712–718 (2005). CASPubMed Google Scholar
Chiang, Y. J., Kim, S. H., Tessarollo, L., Campisi, J. & Hodes, R. J. Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway. Mol. Cell Biol.24, 6631–6634 (2004). CASPubMedPubMed Central Google Scholar
Munoz, P., Blanco, R. & Blasco, M. A. Role of the TRF2 telomeric protein in cancer and ageing. Cell Cycle5, 718–721 (2006). CASPubMed Google Scholar
Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell127, 265–275 (2006). CASPubMed Google Scholar
Jacobs, J. J. & de Lange, T. Significant role for p16INK4A in p53-independent telomere-directed senescence. Curr. Biol.14, 2302–2308 (2004). CASPubMed Google Scholar
Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell14, 501–513 (2004). CASPubMed Google Scholar
Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J.21, 4338–4348 (2002). CASPubMedPubMed Central Google Scholar
Khoo, C. M., Carrasco, D. R., Bosenberg, M. W., Paik, J. H. & Depinho, R. A. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc. Natl Acad. Sci. USA104, 3931–3936 (2007). CASPubMedPubMed Central Google Scholar
Siegl-Cachedenier, I., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev.21, 2234–2247 (2007). CASPubMedPubMed Central Google Scholar
Qi, L. et al. Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res.63, 8188–8196 (2003). CASPubMed Google Scholar
Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature421, 643–648 (2003). CASPubMed Google Scholar
Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature447, 966–971 (2007). CASPubMedPubMed Central Google Scholar
Blanco, R., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev.21, 206–220 (2007). CASPubMedPubMed Central Google Scholar