Targeting the cancer kinome through polypharmacology (original) (raw)
Akritopoulou-Zanze, I. & Hajduk, P. J. Kinase-targeted libraries: the design and synthesis of novel, potent, and selective kinase inhibitors. Drug Discov. Today14, 291–297 (2009). ArticleCASPubMed Google Scholar
Parsons, D. W. et al. Colorectal cancer: mutations in a signalling pathway. Nature436, 792 (2005). ArticleCASPubMed Google Scholar
Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science318, 1108–1113 (2007). ArticleCASPubMed Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol.21, 4342–4349 (2003). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355, 2408–2417 (2006). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet372, 449–456 (2008). ArticleCASPubMed Google Scholar
Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356, 125–134 (2007). ArticleCASPubMed Google Scholar
Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003). ArticleCASPubMedPubMed Central Google Scholar
Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007). ArticleCASPubMed Google Scholar
Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med.353, 123–132 (2005). ArticleCASPubMed Google Scholar
Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355, 2542–2550 (2006). ArticleCASPubMed Google Scholar
Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med.355, 2733–2743 (2006). ArticleCASPubMed Google Scholar
Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med.357, 2666–2676 (2007). ArticleCASPubMed Google Scholar
Jonker, D. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med.357, 2040–2048 (2007). ArticleCASPubMed Google Scholar
Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol.25, 1960–1966 (2007). ArticleCASPubMed Google Scholar
Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med.358, 1160–1174 (2008). ArticleCASPubMed Google Scholar
Hudis, C. A. Trastuzumab — mechanism of action and use in clinical practice. N. Engl. J. Med.357, 39–51 (2007). ArticleCAS Google Scholar
Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359, 1757–1765 (2008). ArticleCASPubMed Google Scholar
Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med.2, 17 (2005). ArticleCAS Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Tamborini, E. et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology127, 294–299 (2004). ArticleCASPubMed Google Scholar
Cools, J. et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med.348, 1201–14 (2003). ArticleCASPubMed Google Scholar
Chen, L. L. et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res.64, 5913–5919 (2004). ArticleCASPubMed Google Scholar
Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2, 73 (2005). ArticleCAS Google Scholar
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science316, 1039–1043 (2007). ArticleCASPubMed Google Scholar
Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature445, 437–441 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science318, 287–290 (2007). ArticleCASPubMed Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). ArticleCASPubMed Google Scholar
Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chem. Biol.4, 691–699 (2008). ArticleCAS Google Scholar
Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med.354, 2531–2541 (2006). ArticleCASPubMed Google Scholar
Kantarjian, H. et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med.354, 2542–2551 (2006). ArticlePubMed Google Scholar
Shah, N. P. et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J. Clin. Invest.117, 2562–2569 (2007). ArticleCASPubMedPubMed Central Google Scholar
O'Hare, T. et al. SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc. Natl Acad. Sci. USA105, 5507–5512 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gontarewicz, A. et al. Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood111, 4355–4364 (2008). ArticleCASPubMed Google Scholar
Carter, T. A. et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl Acad. Sci. USA102, 11011–11016 (2005). ArticleCASPubMedPubMed Central Google Scholar
O'Hare, T. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell16, 401–412 (2009). ArticleCASPubMedPubMed Central Google Scholar
Giles, F. J. et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood109, 500–502 (2007). ArticleCASPubMed Google Scholar
Weinstein, I. B. et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin. Cancer Res.3, 2696–2702 (1997). CASPubMed Google Scholar
McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA104, 19936–19941 (2007). ArticleCASPubMedPubMed Central Google Scholar
Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature439, 358–362 (2006). ArticleCASPubMed Google Scholar
Shah, N. P. et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell14, 485–493 (2008). ArticleCASPubMed Google Scholar
Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nature Genet.40, 600–608 (2008). ArticleCASPubMed Google Scholar
Fan, Q. W. et al. A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res.67, 7960–7965 (2007). ArticleCASPubMedPubMed Central Google Scholar
Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res.68, 9221–9230 (2008). ArticleCASPubMedPubMed Central Google Scholar
Junttila, T. T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell15, 429–440 (2009). ArticleCASPubMed Google Scholar
Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol.4, 682–690 (2008). ArticleCAS Google Scholar
Repasky, G. A., Chenette, E. J. & Der, C. J. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol.14, 639–647 (2004). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). ArticleCASPubMed Google Scholar
Gupta, S. et al. Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell129, 957–968 (2007). ArticleCASPubMed Google Scholar
Wee, S. et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res.69, 4286–93 (2009). ArticleCASPubMed Google Scholar
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med.14, 1351–1356 (2008). ArticleCASPubMed Google Scholar
Normanno, N. et al. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann. Oncol.13, 65–72 (2002). ArticleCASPubMed Google Scholar
Moulder, S. L. et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res.61, 8887–8895 (2001). CASPubMed Google Scholar
Bukowski, R. M. et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J. Clin. Oncol.25, 4536–4541 (2007). ArticleCASPubMed Google Scholar
Tonra, J. R. et al. Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin. Cancer Res.12, 2197–2207 (2006). ArticleCASPubMed Google Scholar
Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med.360, 563–572 (2009). ArticleCASPubMed Google Scholar
Arteaga, C. L. et al. A phase I-II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB2)-overexpressing metastatic breast cancer. Clin. Cancer Res.14, 6277–6283 (2008). ArticleCASPubMedPubMed Central Google Scholar
Warburton, C. et al. Treatment of HER-2/neu overexpressing breast cancer xenograft models with trastuzumab (Herceptin) and gefitinib (ZD1839): drug combination effects on tumor growth, HER-2/neu and epidermal growth factor receptor expression, and viable hypoxic cell fraction. Clin. Cancer Res.10, 2512–2524 (2004). ArticleCASPubMed Google Scholar
Normanno, N., Campiglio, M., Perrone, F., De Luca, A. & Menard, S. Is the gefitinib plus trastuzumab combination feasible in breast cancer patients? Ann. Oncol.16, 1709 (2005). ArticleCASPubMed Google Scholar
Motwani, M. et al. Augmentation of apoptosis and tumor regression by flavopiridol in the presence of CPT-11 in Hct116 colon cancer monolayers and xenografts. Clin. Cancer Res.7, 4209–4219 (2001). CASPubMed Google Scholar
Shah, M. A. et al. A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin. Cancer Res.11, 3836–3845 (2005). ArticleCASPubMed Google Scholar
Torrance, C. J., Agrawal, V., Vogelstein, B. & Kinzler, K. W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol.19, 940–945 (2001). ArticleCAS Google Scholar
Manning, B. D. Challenges and opportunities in defining the essential cancer kinome. Sci. Signal2, 15 (2009). Google Scholar
Goldman, B. For investigational targeted drugs, combination trials pose challenges. J. Natl Cancer Inst.95, 1744–1746 (2003). ArticlePubMed Google Scholar
Chen, H. Optimising strategies for clinical development of combinations of targeted agents. Eur. J. Cancer Suppl.5, 46–52 (2007). Google Scholar
Winslow, R. AstraZeneca, Merck to Test Cancer Drugs in 'Cocktail'. The Wall Street Journal[online], (2009).
Barry, D. W. & Distlerath, L. M. History and accomplishments of the inter-company collaboration for AIDS drug development. Drug Inf. J.34, 741–752 (2000). Article Google Scholar
Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell137, 835–848 (2009). ArticleCASPubMedPubMed Central Google Scholar
Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell137, 821–834 (2009). ArticleCASPubMed Google Scholar
Baldwin, A. et al. Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells. Proc. Natl Acad. Sci. USA105, 16478–16483 (2008). ArticleCASPubMedPubMed Central Google Scholar
Grueneberg, D. A. et al. Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. Proc. Natl Acad. Sci. USA105, 16472–16477 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morgan-Lappe, S. et al. RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene25, 1340–1348 (2006). ArticleCASPubMed Google Scholar
Luo, Y. et al. Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol. Cancer Ther.4, 977–986 (2005). ArticleCASPubMed Google Scholar
Knight, Z. A. & Shokat, K. M. Chemical genetics: where genetics and pharmacology meet. Cell128, 425–430 (2007). ArticleCASPubMed Google Scholar
Lyons, J. F., Wilhelm, S., Hibner, B. & Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer8, 219–225 (2001). ArticleCASPubMed Google Scholar
Hauschild, A. et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol.27, 2823–2830 (2009). ArticleCASPubMed Google Scholar
Strumberg, D. et al. Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors. Int. J. Clin. Pharmacol. Ther.40, 580–581 (2002). ArticleCASPubMed Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gleich, G. J., Leiferman, K. M., Pardanani, A., Tefferi, A. & Butterfield, J. H. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet359, 1577–1578 (2002). ArticleCASPubMed Google Scholar
Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol.11, 593–597 (2004). ArticleCASPubMed Google Scholar
Knight, Z. A. & Shokat, K. M. Features of selective kinase inhibitors. Chem. Biol.12, 621–637 (2005). ArticleCASPubMed Google Scholar
Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bamborough, P., Drewry, D., Harper, G., Smith, G. K. & Schneider, K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem.51, 7898–7914 (2008). ArticleCASPubMed Google Scholar
Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol.16, 127–136 (2006). ArticleCASPubMed Google Scholar
Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnol.26, 127–132 (2008). ArticleCAS Google Scholar
Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell7, 561–73 (2005). ArticleCASPubMed Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). ArticleCASPubMed Google Scholar
Fabian, M. A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nature Biotechnol.23, 329–336 (2005). ArticleCAS Google Scholar
Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl Acad. Sci. USA104, 20523–20528 (2007). ArticleCASPubMedPubMed Central Google Scholar