- Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).
CAS Google Scholar
- Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).
CAS Google Scholar
- Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).
CAS PubMed PubMed Central Google Scholar
- Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).
Article CAS PubMed Google Scholar
- Duda, D. G., Jain, R. K. & Willett, C. G. Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J. Clin. Oncol. 25, 4033–4042 (2007).
CAS PubMed Google Scholar
- Thurston, G., Noguera-Troise, I. & Yancopoulos, G. D. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Rev. Cancer 7, 327–331 (2007).
CAS Google Scholar
- Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).
CAS PubMed PubMed Central Google Scholar
- Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).
CAS PubMed PubMed Central Google Scholar
- Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).
CAS PubMed Google Scholar
- Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).
CAS PubMed Google Scholar
- Lammert, E., Cleaver, O. & Melton, D. Role of endothelial cells in early pancreas and liver development. Mech. Dev. 120, 59–64 (2003).
CAS PubMed Google Scholar
- Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).
CAS PubMed Google Scholar
- Seandel, M. et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc. Natl Acad. Sci. USA 105, 19288–19293 (2008).
CAS PubMed PubMed Central Google Scholar
- Naumov, G. N., Folkman, J., Straume, O. & Akslen, L. A. Tumor-vascular interactions and tumor dormancy. APMIS 116, 569–585 (2008).
CAS PubMed Google Scholar
- Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).
CAS PubMed Google Scholar
- Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).
CAS PubMed PubMed Central Google Scholar
- Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).
CAS PubMed PubMed Central Google Scholar
- Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).
CAS PubMed PubMed Central Google Scholar
- Greenberg, J. I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813 (2008).
CAS PubMed PubMed Central Google Scholar
- Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).
CAS PubMed Google Scholar
- Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
CAS PubMed Google Scholar
- Gimbrone, M. A. Jr, Cotran, R. S. & Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).
CAS PubMed PubMed Central Google Scholar
- Jaffe, E. A., Nachman, R. L., Becker, C. G. & Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973).
CAS PubMed PubMed Central Google Scholar
- Folkman, J. & Klagsburn, M. Angiogenic factors. Science 235, 442–447 (1987).
CAS PubMed Google Scholar
- Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).
CAS PubMed Google Scholar
- Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).
CAS PubMed Google Scholar
- Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).
CAS PubMed Google Scholar
- Nachman, R. L. & Jaffe, E. A. Endothelial cell culture: beginnings of modern vascular biology. J. Clin. Invest. 114, 1037–1040 (2004).
CAS PubMed PubMed Central Google Scholar
- Aird, W. C. Molecular heterogeneity of tumor endothelium. Cell Tissue Res. 335, 271–281 (2009).
CAS PubMed Google Scholar
- Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).
CAS PubMed Google Scholar
- Yano, K. et al. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 109, 613–615 (2007).
CAS PubMed Google Scholar
- Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).
CAS PubMed Google Scholar
- Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).
CAS PubMed PubMed Central Google Scholar
- Seandel, M., Butler, J., Lyden, D. & Rafii, S. A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer Cell 13, 181–183 (2008).
CAS PubMed PubMed Central Google Scholar
- McAllister, S. S. et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133, 994–1005 (2008).
CAS PubMed PubMed Central Google Scholar
- Shojaei, F., Zhong, C., Wu, X., Yu, L. & Ferrara, N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 18, 372–378 (2008).
CAS PubMed Google Scholar
- Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).
CAS PubMed Google Scholar
- Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).
CAS PubMed Google Scholar
- Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).
CAS PubMed Google Scholar
- Jin, D. K. et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Med. 12, 557–567 (2006).
CAS PubMed Google Scholar
- Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).
CAS PubMed PubMed Central Google Scholar
- De Palma, M. et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).
CAS PubMed Google Scholar
- De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).
CAS PubMed Google Scholar
- De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med. 9, 789–795 (2003).
CAS PubMed Google Scholar
- DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).
CAS PubMed PubMed Central Google Scholar
- Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007).
CAS Google Scholar
- Petit, I., Jin, D. & Rafii, S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299–307 (2007).
CAS PubMed PubMed Central Google Scholar
- Minami, E., Laflamme, M. A., Saffitz, J. E. & Murry, C. E. Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 112, 2951–2958 (2005).
PubMed Google Scholar
- Peters, B. A. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Med. 11, 261–262 (2005).
CAS PubMed Google Scholar
- Madlambayan, G. J. et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 114, 4310–4319 (2009).
CAS PubMed PubMed Central Google Scholar
- Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).
CAS PubMed Google Scholar
- Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).
CAS PubMed PubMed Central Google Scholar
- Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).
CAS PubMed Google Scholar
- Shaked, Y. et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14, 263–273 (2008).
CAS PubMed PubMed Central Google Scholar
- Urbich, C. et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell Cardiol. 39, 733–742 (2005).
CAS PubMed Google Scholar
- Assmus, B. et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).
PubMed Google Scholar
- Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).
CAS PubMed Google Scholar
- Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).
CAS PubMed Google Scholar
- Rafii, S. & Lyden, D. Cancer. A few to flip the angiogenic switch. Science 319, 163–164 (2008).
CAS PubMed PubMed Central Google Scholar
- Pirtskhalaishvili, G. & Nelson, J. B. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44, 77–87 (2000).
CAS PubMed Google Scholar
- Nikolova, G. et al. The vascular basement membrane: a niche for insulin gene expression and β cell proliferation. Dev. Cell 10, 397–405 (2006).
CAS PubMed Google Scholar
- Nikolova, G., Strilic, B. & Lammert, E. The vascular niche and its basement membrane. Trends Cell Biol. 17, 19–25 (2007).
CAS PubMed Google Scholar
- Rafii, S. et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).
CAS PubMed Google Scholar
- Rafii, S. et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86, 3353–3363 (1995).
CAS PubMed Google Scholar
- Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).
CAS PubMed Google Scholar
- Mathieu, C. et al. Endothelial cell-derived bone morphogenetic proteins control proliferation of neural stem/progenitor cells. Mol. Cell Neurosci. 38, 569–577 (2008).
CAS PubMed Google Scholar
- Ramirez-Castillejo, C. et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neurosci. 9, 331–339 (2006).
CAS PubMed Google Scholar
- Leventhal, C., Rafii, S., Shahar, A. & Goldman, S. A. Endothelial trophic support of neuronal production and recruitment from adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).
CAS PubMed Google Scholar
- Louissaint, A. Jr, Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).
CAS PubMed Google Scholar
- Matsunaga, T. et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nature Med. 9, 1158–1165 (2003).
CAS PubMed Google Scholar
- Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med. 12, 1167–1174 (2006).
PubMed Google Scholar
- Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. 106, 511–521 (2000).
CAS PubMed PubMed Central Google Scholar
- Dias, S. et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc. Natl Acad. Sci. USA 98, 10857–10862 (2001).
CAS PubMed PubMed Central Google Scholar
- Petit, I. et al. The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood 111, 1951–1961 (2008).
CAS PubMed PubMed Central Google Scholar
- Dias, S., Shmelkov, S. V., Lam, G. & Rafii, S. VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99, 2532–2540 (2002).
CAS PubMed Google Scholar
- Koistinen, P. et al. Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system. Leukemia 15, 1433–1441 (2001).
CAS PubMed Google Scholar
- Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Med. 9, 1370–1376 (2003).
CAS PubMed Google Scholar
- Pumiglia, K. & Temple, S. PEDF: bridging neurovascular interactions in the stem cell niche. Nature Neurosci. 9, 299–300 (2006).
CAS PubMed Google Scholar
- Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–48 (2008).
CAS PubMed PubMed Central Google Scholar
- Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67, 3560–3564 (2007).
CAS PubMed Google Scholar
- Nicosia, R. F., Tchao, R. & Leighton, J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res. 43, 2159–2166 (1983).
CAS PubMed Google Scholar
- Rak, J. W., Hegmann, E. J., Lu, C. & Kerbel, R. S. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J. Cell Physiol. 159, 245–255 (1994).
CAS PubMed Google Scholar
- Zeng, Q. et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8, 13–23 (2005).
CAS PubMed Google Scholar
- Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).
CAS PubMed PubMed Central Google Scholar
- Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).
CAS PubMed PubMed Central Google Scholar
- Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).
CAS PubMed Google Scholar
- Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397–1409 (2007).
CAS PubMed PubMed Central Google Scholar
- Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).
CAS PubMed PubMed Central Google Scholar
- Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).
CAS PubMed Google Scholar
- Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).
CAS PubMed Google Scholar
- Jin, L. et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5, 31–42 (2009).
CAS PubMed Google Scholar
- Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).
CAS PubMed Google Scholar
- Avecilla, S. T. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Med. 10, 64–71 (2004).
CAS PubMed Google Scholar
- Kopp, H. G. et al. Tie-2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 106, 505–513 (2005).
CAS PubMed PubMed Central Google Scholar
- Kopp, H. G., Avecilla, S. T., Hooper, A. T. & Rafii, S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20, 349–356 (2005).
CAS Google Scholar
- Kopp, H. G. et al. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J. Clin. Invest. 116, 3277–3291 (2006).
CAS PubMed PubMed Central Google Scholar
- Yoshitomi, H. & Zaret, K. S. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131, 807–817 (2004).
CAS PubMed Google Scholar
- Swendeman, S. et al. VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling. Circ. Res. 103, 916–918 (2008).
CAS PubMed PubMed Central Google Scholar
- Urbich, C. et al. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 19, 974–976 (2005).
CAS PubMed Google Scholar
- Rak, J., Milsom, C. & Yu, J. Tissue factor in cancer. Curr. Opin. Hematol. 15, 522–528 (2008).
CAS PubMed Google Scholar
- Rak, J., Milsom, C., Magnus, N. & Yu, J. Tissue factor in tumour progression. Best Pract Res. Clin. Haematol. 22, 71–83 (2009).
CAS PubMed Google Scholar
- Milsom, C. et al. The role of tumor-and host-related tissue factor pools in oncogene-driven tumor progression. Thromb. Res. 120, S82–S91 (2007).
PubMed Google Scholar
- Milsom, C., Yu, J., May, L., Magnus, N. & Rak, J. Diverse roles of tissue factor-expressing cell subsets in tumor progression. Semin. Thromb. Hemost. 34, 170–181 (2008).
CAS PubMed Google Scholar
- Palumbo, J. S. & Degen, J. L. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb. Res. 120, S22–S28 (2007).
PubMed Google Scholar
- Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).
CAS PubMed Google Scholar
- Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).
CAS PubMed PubMed Central Google Scholar
- Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10, 159–170 (2006).
CAS PubMed PubMed Central Google Scholar
- Gerritsen, M. E. et al. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 10, 63–81 (2003).
CAS PubMed Google Scholar
- Kahn, J. et al. Gene expression profiling in an in vitro model of angiogenesis. Am. J. Pathol. 156, 1887–1900 (2000).
CAS PubMed PubMed Central Google Scholar
- Fernandez, L. et al. Tumor necrosis factor-alpha and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. Exp. Hematol. 36, 545–558 (2008).
CAS PubMed PubMed Central Google Scholar
- Zhang, C. C. & Lodish, H. F. Cytokines regulating hematopoietic stem cell function. Curr. Opin. Hematol. 15, 307–311 (2008).
CAS PubMed PubMed Central Google Scholar
- Candal, F. J. et al. BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc. Res. 52, 221–234 (1996).
CAS PubMed Google Scholar
- Oostingh, G. J., Schlickum, S., Friedl, P. & Schon, M. P. Impaired induction of adhesion molecule expression in immortalized endothelial cells leads to functional defects in dynamic interactions with lymphocytes. J. Invest. Dermatol. 127, 2253–2258 (2007).
CAS PubMed Google Scholar
- Buser, R., Montesano, R., Garcia, I., Dupraz, P. & Pepper, M. S. Bovine microvascular endothelial cells immortalized with human telomerase. J. Cell Biochem. 98, 267–286 (2006).
CAS PubMed Google Scholar
- Nisato, R. E. et al. Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am. J. Pathol. 165, 11–24 (2004).
CAS PubMed PubMed Central Google Scholar
- Yamaguchi, T. et al. Development of a new method for isolation and long-term culture of organ-specific blood vascular and lymphatic endothelial cells of the mouse. FEBS J. 275, 1988–1998 (2008).
CAS PubMed Google Scholar
- Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer 8, 942–956 (2008).
CAS Google Scholar
- Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–228 (2004).
CAS PubMed Google Scholar
- Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).
CAS PubMed PubMed Central Google Scholar