Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins (original) (raw)
Wang, J. C. & Dick, J. E. Cancer stem cells: lessons from leukemia. Trends Cell Biol.15, 494–501 (2005). CASPubMed Google Scholar
Clarke, M. F. et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res.66, 9339–9344 (2006). ArticleCASPubMed Google Scholar
Campbell, L. L. & Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle6, 2332–2338 (2007). CASPubMed Google Scholar
Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer3, 895–902 (2003). CAS Google Scholar
Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res.66, 1891–1895; discussion 1890 (2006). CASPubMed Google Scholar
Somervaille, T. C. et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell4, 129–140 (2009). CASPubMedPubMed Central Google Scholar
Kennison, J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet.29, 289–303 (1995). CASPubMed Google Scholar
Simon, J. Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell Biol.7, 376–385 (1995). CASPubMed Google Scholar
Pirrotta, V. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet.13, 314–318 (1997). CASPubMed Google Scholar
Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell128, 735–745 (2007). CASPubMed Google Scholar
Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev.19, 150–158 (2009). PubMed Google Scholar
Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol.10, 697–708 (2009). CAS Google Scholar
Bracken, A. P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Rev. Cancer9, 773–784 (2009). This Review highlights the intriguing role of cell fate transcription factors and long non-coding RNAs in the regulation of PcG function in cancer. CAS Google Scholar
Breen, T. R. & Harte, P. J. Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila. Mech. Dev.35, 113–127 (1991). CASPubMed Google Scholar
Orlando, V. & Paro, R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev.5, 174–179 (1995). CASPubMed Google Scholar
Brock, H. W. & van Lohuizen, M. The Polycomb group - no longer an exclusive club? Curr. Opin. Genet. Dev.11, 175–181 (2001). CASPubMed Google Scholar
Levine, S. S., King, I. F. G. & Kingston, R. E. Division of labor in Polycomb group repression. Trends Biochem. Sci.29, 478–485 (2004). CASPubMed Google Scholar
Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer6, 846–856 (2006). CAS Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). CASPubMed Google Scholar
Orlando, V. Polycomb, epigenomes, and control of cell identity. Cell112, 599–606 (2003). CASPubMed Google Scholar
Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell15, 57–67 (2004). CASPubMed Google Scholar
Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell138, 885–897 (2009). CASPubMed Google Scholar
Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell140, 99–110 (2010). References 24 and 25 provide the first functional evidence for the presence of PREs in mammals. CASPubMedPubMed Central Google Scholar
Levine, S. S. et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol.22, 6070–6078 (2002). CASPubMedPubMed Central Google Scholar
Allis, C. D. Jenuwein, T. & Reinberg, D. Epigenetics (Cold Spring Harbor Lab. Press, Cold Spring Harbor, New York, 2007). Google Scholar
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431, 873–878 (2004). CASPubMed Google Scholar
Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20, 845–854 (2005). CASPubMed Google Scholar
Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science306, 1574–1577 (2004). CASPubMed Google Scholar
Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell13, 887–893 (2004). CASPubMed Google Scholar
Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev.20, 2041–2054 (2006). CASPubMedPubMed Central Google Scholar
Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol.9, 1428–1435 (2007). CASPubMed Google Scholar
Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet.4, e1000242 (2008). PubMedPubMed Central Google Scholar
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J.25, 3110–3122 (2006). CASPubMedPubMed Central Google Scholar
Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol.27, 3769–3779 (2007). CASPubMedPubMed Central Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). CASPubMed Google Scholar
Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol.20, 1899–1910 (2000). CASPubMedPubMed Central Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). CASPubMed Google Scholar
Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell10, 1107–1117 (2002). CASPubMed Google Scholar
Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121, 873–885 (2005). CASPubMed Google Scholar
Petruk, S. et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science294, 1331–1334 (2001). CASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). CASPubMed Google Scholar
Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell136, 1122–1135 (2009). CASPubMedPubMed Central Google Scholar
Sif, S. ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J. Cell. Biochem.91, 1087–1098 (2004). CASPubMed Google Scholar
Smith, C. L. & Peterson, C. L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol.65, 115–148 (2005). CASPubMed Google Scholar
Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell68, 561–572 (1992). CASPubMed Google Scholar
Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev.9, 2770–2779 (1995). CAS Google Scholar
Recht, J. & Osley, M. A. Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast. EMBO J.18, 229–240 (1999). CASPubMedPubMed Central Google Scholar
Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res.23, 2715–2723 (1995). CASPubMedPubMed Central Google Scholar
Corey, L. L., Weirich, C. S., Benjamin, I. J. & Kingston, R. E. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev.17, 1392–1401 (2003). CASPubMedPubMed Central Google Scholar
Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA97, 3364–3369 (2000). CASPubMedPubMed Central Google Scholar
Schnitzler, G., Sif, S. & Kingston, R. E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell94, 17–27 (1998). CASPubMed Google Scholar
Imbalzano, A. N., Kwon, H., Green, M. R. & Kingston, R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature370, 481–485 (1994). CASPubMed Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442, 86–90 (2006). This seminal paper links covalent histone modification to chromatin remodelling. CASPubMed Google Scholar
Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell65, 753–763 (1991). CASPubMed Google Scholar
van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell65, 737–752 (1991). CASPubMed Google Scholar
Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell128, 459–475 (2007). This paper identified CHD5 as a tumour suppressor, providing the first functional evidence that members of the CHD chromatin remodelling family modulate tumorigenesis. CASPubMed Google Scholar
Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer6, 472–476 (2006). This Review discusses evidence for cellular senescence as a tumour suppressive mechanism and its utility for monitoring the success of anticancer therapies. CAS Google Scholar
Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev.19, 1438–1443 (2005). CASPubMedPubMed Central Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). CASPubMedPubMed Central Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). CASPubMed Google Scholar
Gonzalez, S. et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature440, 702–706 (2006). This groundbreaking paper identified acis-acting element that functions to coordinately regulate expression of theCDKN2AandCDKN2Bloci, providing the first example of replication-coupled transcriptional regulation in mammals. CASPubMed Google Scholar
Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res.576, 22–38 (2005). CASPubMed Google Scholar
Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev.21, 525–530 (2007). CASPubMedPubMed Central Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). CASPubMed Google Scholar
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). CASPubMedPubMed Central Google Scholar
van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev.8, 757–769 (1994). CASPubMed Google Scholar
Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev.23, 1177–1182 (2009). CASPubMedPubMed Central Google Scholar
Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev.23, 1171–1176 (2009). CASPubMedPubMed Central Google Scholar
Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature370, 477–481 (1994). References 70 and 71 provide important mechanistic insight into PcG–TrxG-mediated chromatin dynamics in response to activated oncogenes. CASPubMed Google Scholar
Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J.15, 5370–5382 (1996). CASPubMedPubMed Central Google Scholar
Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol.28, 3457–3464 (2008). This work demonstrates that TrxG chromatin remodelling proteins can override PcG-mediated repression in cancer cells. CASPubMedPubMed Central Google Scholar
Ae, K. et al. Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene21, 3112–3120 (2002). CASPubMed Google Scholar
Versteege, I., Medjkane, S., Rouillard, D. & Delattre, O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene21, 6403–6412 (2002). CASPubMed Google Scholar
Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene21, 5193–5203 (2002). CASPubMed Google Scholar
Imbalzano, A. N. & Jones, S. N. Snf5 tumor suppressor couples chromatin remodeling, checkpoint control, and chromosomal stability. Cancer Cell7, 294–295 (2005). CASPubMed Google Scholar
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98, 37–46 (1999). CASPubMed Google Scholar
Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep.1, 500–506 (2000). CASPubMedPubMed Central Google Scholar
Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA97, 13796–13800 (2000). CASPubMedPubMed Central Google Scholar
Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol.21, 3598–3603 (2001). CASPubMedPubMed Central Google Scholar
Isakoff, M. S. et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc. Natl Acad. Sci. USA102, 17745–17750 (2005). CASPubMedPubMed Central Google Scholar
Guidi, C. J. et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res.66, 8076–8082 (2006). CASPubMed Google Scholar
Bultman, S. J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene27, 460–468 (2008). CASPubMed Google Scholar
Chai, J. et al. Tumor-specific cooperation of retinoblastoma protein family and Snf5 inactivation. Cancer Res.67, 3002–3009 (2007). CASPubMed Google Scholar
Tsikitis, M., Zhang, Z., Edelman, W., Zagzag, D. & Kalpana, G. V. Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc. Natl Acad. Sci. USA102, 12129–12134 (2005). CASPubMedPubMed Central Google Scholar
Thompson, P. M., Gotoh, T., Kok, M., White, P. S. & Brodeur, G. M. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene22, 1002–1011 (2003). CASPubMed Google Scholar
Jacobs, J. J. & van Lohuizen, M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim. Biophys. Acta1602, 151–161 (2002). CASPubMed Google Scholar
Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet.4, e1000217 (2008). PubMedPubMed Central Google Scholar
Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene20, 5695–5707 (2001). CASPubMed Google Scholar
Daser, A. & Rabbitts, T. H. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev.18, 965–974 (2004). CASPubMed Google Scholar
Popovic, R. & Zeleznik-Le, N. J. MLL: how complex does it get? J. Cell. Biochem.95, 234–242 (2005). CASPubMed Google Scholar
Liu, H., Cheng, E. H. & Hsieh, J. J. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev.21, 2385–2398 (2007). CASPubMedPubMed Central Google Scholar
Liu, H., Takeda, S., Cheng, E. H. & Hsieh, J. J. Biphasic MLL takes helm at cell cycle control: implications in human mixed lineage leukemia. Cell Cycle7, 428–435 (2008). References 93 and 94 discovered that MLL levels oscillate as a function of the cell cycle, and that MLL fusion proteins found in human leukaemia are resistant to this regulation. CASPubMed Google Scholar
Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L. & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood100, 3710–3718 (2002). CASPubMed Google Scholar
Hsieh, J. J., Cheng, E. H. & Korsmeyer, S. J. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell115, 293–303 (2003). CASPubMed Google Scholar
Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P. & Korsmeyer, S. J. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol. Cell. Biol.23, 186–194 (2003). CASPubMedPubMed Central Google Scholar
Takeda, S. et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev.20, 2397–2409 (2006). CASPubMedPubMed Central Google Scholar
Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell27, 107–119 (2007). CASPubMed Google Scholar
Yu, B. D., Hanson, R. D., Hess, J. L., Horning, S. E. & Korsmeyer, S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA95, 10632–10636 (1998). CASPubMedPubMed Central Google Scholar
Yagi, H. et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood92, 108–117 (1998). CASPubMed Google Scholar
Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J.17, 3714–3725 (1998). CASPubMedPubMed Central Google Scholar
Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev.17, 2298–2307 (2003). CASPubMedPubMed Central Google Scholar
Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell121, 167–178 (2005). CASPubMed Google Scholar
van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell109, 745–756 (2002). CASPubMed Google Scholar
Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol.12, 1052–1058 (2002). CASPubMed Google Scholar
Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev.16, 1518–1527 (2002). CASPubMedPubMed Central Google Scholar
Munnia, A. et al. Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene20, 4853–4863 (2001). CASPubMed Google Scholar
Park, J. H. & Roeder, R. G. GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol. Cell. Biol.26, 4006–4016 (2006). CASPubMedPubMed Central Google Scholar
Debernardi, S. et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood99, 275–281 (2002). PubMed Google Scholar
Nie, Z. et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol. Cell. Biol.23, 2942–2952 (2003). CASPubMedPubMed Central Google Scholar
De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130, 1083–1094 (2007). CASPubMed Google Scholar
Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science318, 447–450 (2007). CASPubMed Google Scholar
Hoenerhoff, M. J. et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene28, 3022–3032 (2009). CASPubMedPubMed Central Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). CASPubMed Google Scholar
Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439, 871–874 (2006). CASPubMed Google Scholar
Murphy, T. M., Perry, A. S. & Lawler, M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr. Relat. Cancer15, 11–25 (2008). CASPubMed Google Scholar
Chen, H., Tu, S. W. & Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem.280, 22437–22444 (2005). CASPubMed Google Scholar
Marchion, D. & Munster, P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev. Anticancer Ther.7, 583–598 (2007). CASPubMed Google Scholar
Mottet, D. & Castronovo, V. Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis25, 183–189 (2008). CASPubMed Google Scholar
Fulda, S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr. Cancer Drug Targets8, 132–140 (2008). CASPubMed Google Scholar
Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev.21, 1050–1063 (2007). CASPubMedPubMed Central Google Scholar
Klochendler-Yeivin, A., Picarsky, E. & Yaniv, M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol. Cell. Biol.26, 2661–2674 (2006). CASPubMedPubMed Central Google Scholar
Vries, R. G. et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev.19, 665–670 (2005). CASPubMedPubMed Central Google Scholar
Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature430, 797–802 (2004). CASPubMed Google Scholar
Park, J. H. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J.25, 3986–3997 (2006). CASPubMedPubMed Central Google Scholar
McKenna, E. S. et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol. Cell. Biol.28, 6223–6233 (2008). This paper supports the concept that inactivation of TrxG chromatin remodelling proteins can substitute for genomic instability in cancer. CASPubMedPubMed Central Google Scholar
Chai, J., Charboneau, A. L., Betz, B. L. & Weissman, B. E. Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res.65, 10192–10198 (2005). CASPubMed Google Scholar
Sansam, C. G. & Roberts, C. W. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle5, 621–624 (2006). CASPubMed Google Scholar
Yang, X. et al. CDKN1C (p57KPI2) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE4, e5011 (2009). PubMedPubMed Central Google Scholar
Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol.24, 268–273 (2006). CASPubMed Google Scholar
Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet.37, 391–400 (2005). CASPubMed Google Scholar
Lin, J. C. et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell12, 432–444 (2007). CASPubMedPubMed Central Google Scholar
Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med.13, 363–372 (2007). CASPubMed Google Scholar
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet.37, 853–862 (2005). CASPubMed Google Scholar
Richter, G. H. et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA106, 5324–5329 (2009). CASPubMedPubMed Central Google Scholar
Kidani, K. et al. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol.45, 39–46 (2009). CASPubMed Google Scholar
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100, 11606–11611 (2003). CASPubMedPubMed Central Google Scholar
Pietersen, A. M. et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res.10, R109 (2008). PubMedPubMed Central Google Scholar
Sasaki, M. et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab. Invest.88, 873–882 (2008). CASPubMed Google Scholar
Yonemitsu, Y. et al. Distinct expression of polycomb group proteins EZH2 and BMI1 in hepatocellular carcinoma. Hum. Pathol.40, 1304–1311 (2009). CASPubMed Google Scholar
van Leenders, G. J. et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur. Urol.52, 455–463 (2007). CASPubMed Google Scholar
Hoffmann, M. J. et al. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B, are associated with DNA methylation changes in prostate cancer. Cancer Biol. Ther.6, 1403–1412 (2007). CASPubMed Google Scholar
He, X. T. et al. Association between Bmi1 and clinicopathological status of esophageal squamous cell carcinoma. World J. Gastroenterol.15, 2389–2394 (2009). CASPubMedPubMed Central Google Scholar
Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428, 337–341 (2004). CASPubMed Google Scholar
Mohty, M., Yong, A. S., Szydlo, R. M., Apperley, J. F. & Melo, J. V. The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood110, 380–383 (2007). CASPubMed Google Scholar
van Galen, J. C. et al. Expression of the polycomb-group gene BMI1 is related to an unfavourable prognosis in primary nodal DLBCL. J. Clin. Pathol.60, 167–172 (2007). CASPubMed Google Scholar
Nowak, K. et al. BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res.34, 1745–1754 (2006). CASPubMedPubMed Central Google Scholar
Shafaroudi, A. M. et al. Overexpression of BMI1, a polycomb group repressor protein, in bladder tumors: a preliminary report. Urol. J.5, 99–105 (2008). PubMed Google Scholar
Tirabosco, R., De Maglio, G., Skrap, M., Falconieri, G. & Pizzolitto, S. Expression of the Polycomb-Group protein BMI1 and correlation with p16 in astrocytomas an immunohistochemical study on 80 cases. Pathol. Res. Pract.204, 625–631 (2008). PubMed Google Scholar
Ziemin-van der Poel, S. et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl Acad. Sci. USA88, 10735–10739 (1991). CASPubMedPubMed Central Google Scholar
Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell71, 701–708 (1992). CASPubMed Google Scholar
Domer, P. H. et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc. Natl Acad. Sci. USA90, 7884–7888 (1993). CASPubMedPubMed Central Google Scholar
Thirman, M. J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med.329, 909–914 (1993). CASPubMed Google Scholar
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature394, 203–206 (1998). CASPubMed Google Scholar
Sevenet, N. et al. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet.8, 2359–2368 (1999). CASPubMed Google Scholar
Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res.59, 74–79 (1999). CASPubMed Google Scholar
Reisman, D. N. et al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene21, 1196–1207 (2002). CASPubMed Google Scholar
Reisman, D. N., Sciarrotta, J., Wang, W., Funkhouser, W. K. & Weissman, B. E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res.63, 560–566 (2003). CASPubMed Google Scholar
Medina, P. P. et al. Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRGI, in lung tumors. Genes Chromosomes Cancer41, 170–177 (2004). CASPubMed Google Scholar
Medina, P. P. et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat.29, 617–622 (2008). CASPubMed Google Scholar
Gunduz, E. et al. Genetic and epigenetic alterations of BRG1 promote oral cancer development. Int. J. Oncol.26, 201–210 (2005). CASPubMed Google Scholar
Gunduz, E. et al. Loss of heterozygosity at the 9p21–24 region and identification of BRM as a candidate tumor suppressor gene in head and neck squamous cell carcinoma. Cancer Invest.27, 661–668 (2009). CASPubMed Google Scholar
Yamamichi, N. et al. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res.67, 10727–10735 (2007). CASPubMed Google Scholar
Moloney, F. J. et al. Hotspot mutation of Brahma in non-melanoma skin cancer. J. Invest. Dermatol.129, 1012–1015 (2009). CASPubMed Google Scholar
Brodeur, G. M., Sekhon, G. & Goldstein, M. N. Chromosomal aberrations in human neuroblastomas. Cancer40, 2256–2263 (1977). CASPubMed Google Scholar
White, P. S. et al. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proc. Natl Acad. Sci. USA92, 5520–5524 (1995). CASPubMedPubMed Central Google Scholar
Caron, H. et al. Chromosome bands 1p35-36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosomes Cancer30, 168–174 (2001). CASPubMed Google Scholar
Godfried, M. B. et al. Lack of interstitial chromosome 1p deletions in clinically-detected neuroblastoma. Eur. J. Cancer38, 1513–1519 (2002). CASPubMed Google Scholar
White, P. S. et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene24, 2684–2694 (2005). CASPubMed Google Scholar
Okawa, E. R. et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene27, 803–810 (2008). CASPubMed Google Scholar
Piaskowski, S. et al. GADD45A and EPB41 as tumor suppressor genes in meningioma pathogenesis. Cancer Genet. Cytogenet.162, 63–67 (2005). CASPubMed Google Scholar
Poetsch, M., Dittberner, T. & Woenckhaus, C. Microsatellite analysis at 1p36.3 in malignant melanoma of the skin: fine mapping in search of a possible tumour suppressor gene region. Melanoma Res.13, 29–33 (2003). CASPubMed Google Scholar
Moley, J. F. et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res.52, 770–774 (1992). CASPubMed Google Scholar
Mulligan, L. M., Gardner, E., Smith, B. A., Mathew, C. G. & Ponder, B. A. Genetic events in tumour initiation and progression in multiple endocrine neoplasia type 2. Genes Chromosomes Cancer6, 166–177 (1993). CASPubMed Google Scholar
Edstrom Elder, E. et al. Loss of heterozygosity on the short arm of chromosome 1 in pheochromocytoma and abdominal paraganglioma. World J. Surg.26, 965–971 (2002). PubMed Google Scholar
Aarts, M. et al. Microarray-based CGH of sporadic and syndrome-related pheochromocytomas using a 0.1-0.2 Mb bacterial artificial chromosome array spanning chromosome arm 1p. Genes Chromosomes Cancer45, 83–93 (2006). CASPubMed Google Scholar
Dong, Z. et al. Identification of two contiguous minimally deleted regions on chromosome 1p36.31-p36.32 in oligodendroglial tumours. Br. J. Cancer91, 1105–1111 (2004). CASPubMedPubMed Central Google Scholar
Felsberg, J. et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol.14, 121–130 (2004). CASPubMed Google Scholar
Barbashina, V., Salazar, P., Holland, E. C., Rosenblum, M. K. & Ladanyi, M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res.11, 1119–1128 (2005). CASPubMed Google Scholar
Mori, N. et al. Chromosome band 1p36 contains a putative tumor suppressor gene important in the evolution of chronic myelocytic leukemia. Blood92, 3405–3409 (1998). CASPubMed Google Scholar
Melendez, B. et al. Coincidental LOH regions in mouse and humans: evidence for novel tumor suppressor loci at 9q22-q34 in non-Hodgkin's lymphomas. Leuk. Res.27, 627–633 (2003). CASPubMed Google Scholar
Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature447, 966–971 (2007). CASPubMedPubMed Central Google Scholar
Kleer, C. G., Bryant, B. R., Giordano, T. J., Sobel, M. & Merino, M. J. Genetic changes in chromosomes 1p and 17p in thyroid cancer progression. Endocr. Pathol.11, 137–143 (2000). CASPubMed Google Scholar
Zhou, C. Z., Qiu, G. Q., Zhang, F., He, L. & Peng, Z. H. Loss of heterozygosity on chromosome 1 in sporadic colorectal carcinoma. World J. Gastroenterol.10, 1431–1435 (2004). CASPubMedPubMed Central Google Scholar
Cheung, T. H. et al. Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol. Oncol.96, 510–515 (2005). CASPubMed Google Scholar
Bieche, I. et al. Two distinct regions involved in 1p deletion in human primary breast cancer. Cancer Research53, 1990–1994 (1993). CASPubMed Google Scholar
Bieche, I., Khodja, A. & Lidereau, R. Deletion mapping of chromosomal region 1p32-pter in primary breast cancer. Genes Chromosomes Cancer24, 255–263 (1999). CASPubMed Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). PubMed Google Scholar
Gorringe, K. L. et al. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia10, 1253–1258 (2008). CASPubMedPubMed Central Google Scholar